谈谈数据可视化

谈谈数据可视化数据可视化可以帮助我们更清晰明了地观察数据背后的隐藏信息 这篇文章里 作者就从历史发展维度 从当下产品经理的工作流程等维度 对数据可视化做了解读 一起来看

大家好,欢迎来到IT知识分享网。

数据可视化可以帮助我们更清晰明了地观察数据背后的隐藏信息。这篇文章里,作者就从历史发展维度、从当下产品经理的工作流程等维度,对数据可视化做了解读,一起来看。

谈谈数据可视化

数据可视化是指将数据转换为可感知的图形、符号、颜色、纹理等,这并不是互联网时代才有的新鲜概念,它的发展与测量、绘画、文明、科技的发展是一脉相承的。(主要介绍在互联网领域的应用)

一、历史发展

「17世纪以前」-萌芽:最早的地图在土耳其出现,中国最早见于夏朝,通过手工方式制作可视化作品。

「17世纪」-测量与理论:对物理基本量(时间、距离和空间)的测量设备与理论的完善,它们被广泛用于航空、测绘、制图、浏览和国土勘探等。同时,制图学理论与实践也随着分析几何、测量误差、概率论、人口统计和政治版图的发展而迅速成长。17世纪末,甚至产生了基于真实测量数据的可视化方法。从这时起,人类开始了可视化思考的新模式。

「18世纪」-图形符号:绘图师不再满足于在地图上展现几何信息,发明了新的图形化形式(等值线、轮廓线)和其他物理信息的概念图(地理、经济、医学)。随着统计理论、实验数据分析的发展,抽象图和函数图被广泛发明。18世纪是统计图形学的繁荣时期,奠基人William Playfair发明了折线图、柱状图、显示局部与整体关系的饼状图和圆图等今天最常用的统计图表。

「19世纪」-数据图形:随着工艺设计的完善,统计图形和主题制图爆炸性增长,人们已经掌握了整套统计数据可视化工具,包括柱状图、饼图、直方图、折线图、时间线、轮廓线等。关于社会、地理、医学和经济的统计数据越来越多,将国家的统计数据和其可视表达放在地图上,产生了概念制图的新思维,其作用开始体现在政府规划和运营中。

「1900-1949年」-现代启蒙:第一次意识到图形显示的方式能为航空、物理、天文和生物等科学与工程领域提供新的洞察和发现机会。多维数据可视化和心理学的介入成为这个时期的重要特点。

「1950-1974年」-数据可视化重生(多维信息的可视编码):现代电子计算机的诞生。计算机的出现彻底地改变了数据分析工作。到60年代晚期,大型计算机已广泛分布于西方的大学和研究机构,使用计算机程序绘制数据可视化图形逐渐取代手绘的图形。

「1975-1987年」-多维数据可视化:各种计算机系统,计算机图形学,图形显示设备,人机交互技术发展激发了人们可视化热情。数据密集型计算器走上了舞台,也造就了对数据分析和呈现的更高需求,多维图形诞生。(1986年,第一款excel问世)。

「1987-2004年」-交互可视化:具有与人类交互的方式,如单击按钮,移动滑块,以及足够快的响应时间以显示输入和输出之间的真实关系。

「2004-至今」-可视分析学:进入21世纪,随着计算机相关硬件升级,现有可视化已难以应对海量、高维、多源的动态数据的分析挑战,需要综合可视化、图形学、数据挖掘理论与方法,研究新的理论模型,辅助用户从大尺度、复杂、矛盾的数据中快速挖掘出有用的数据,做出有效决策,这门新兴学科称为可视分析学。

二、工具分类

  • Excel(数据分析代表):普世工具,功能强大。
  • 独立图表插件(fusioncharts、echarts等):需要前后端开发。
  • 商业化可视化软件(tableau、powerbi):单人独立完成,需要一定的sql功底和软件了解程度。
  • 自助可视化软件(企业自研):报表需求膨胀,中央集权模式下统一数据可视化消化不良,需要下放部分数据可视化制作权限的选择。

三、数据可视化产品经理工作流程

  • 业务需求沟通:了解业务背景,目前在做的事情,为什么要看这些指标,解决什么问题,当前是怎么看数据的(没有,还是已经有想更好看更高效),看完之后会怎么做。
  • 产品规划:一般来说新提的报表需求不会孤立存在,要与现有的报表平台的分析主题、功能定位结合起来,给新报表安个家。
  • 数据口径梳理:看什么指标,指标什么含义,统计逻辑是什么,要支持哪些维度。
  • 需求评估:主要包括数据质量和数据量。
  • 可视化页面设计:基于业务分析思路进行报表设计,区分核心指标和次级指标,同时兼顾报表平台产品设计通用性,实用>美观。
  • 方案业务沟通评审&开发排期评审。
  • 开发跟进。
  • 上线UAT。

四、数据可视化报表设计思路

产品设计包括报表设计,先看面向用户群体,一般来说报表群体分为3类:

  • 管理层:关心大盘核心指标,设计时避免指标粒度过细&筛选维度过多,尽量一眼能看完。
  • 业务leader:关心负责业务大盘核心指标,设计时需要考虑该业务关心的核心指标,简单下探即可,让业务leader看清业务全貌。
  • 执行层:关心自己负责的一亩三分地,数据能否支持自己的执行动作,设计时针对具体要解决的问题,进行专题报表设计,涉及指标要围绕专题做拆解和渐近。

在满足业务需求的前提下,报表设计应该更定制还是更通用?

  • 定制:优点是单一场景下使用体验最好,缺点是不易拓展,有相似需求需要新做报表。
  • 通用:优点是通用性好,代价是割舍些体验,可能需要切换点击多次才能得到想要的数据。

具体如何选择,视报表平台发展阶段、业务需求量而定。

如果是发展初期、需求相对小,偏向通用型;如果发展较成熟、需求很旺盛,可以考虑定制,但前提是通用报表已经能满足业务需求,定制更多是基于操作更便捷。

本文由 @起司Criss 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议

该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/108201.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信