不定积分公式和推导

不定积分公式和推导不定积分公式一、记忆部分∫tan⁡xdx=−ln⁡∣cos⁡x∣+C\int{\tanx}dx=-\ln|\cosx|+C∫tanxdx=−ln∣cosx∣+C∫cot⁡xdx=ln⁡∣sin⁡x∣+C\int\cotxdx=\ln|\sinx|+C∫cotxdx=ln∣sinx∣+C∫sec⁡xdx=∫1cos⁡xdx=ln⁡∣1+sin⁡xcos⁡x∣+C\in…

大家好,欢迎来到IT知识分享网。不定积分公式和推导

不定积分公式

一、记忆部分

  1. ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int{\tan x}dx = -\ln |\cos x|+C tanxdx=lncosx+C
  2. ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot xdx = \ln |\sin x|+C cotxdx=lnsinx+C
  3. ∫ sec ⁡ x d x = ∫ 1 cos ⁡ x d x = ln ⁡ ∣ 1 + sin ⁡ x cos ⁡ x ∣ + C \int \sec x dx =\int \frac{1}{\cos x}dx= \ln | \frac{1+\sin x}{\cos x}|+C secxdx=cosx1dx=lncosx1+sinx+C
  4. ∫ csc ⁡ x d x = ∫ 1 sin ⁡ x d x = ln ⁡ ∣ 1 − cos ⁡ x sin ⁡ x ∣ + C \int \csc xdx = \int \frac{1}{\sin x}dx = \ln |\frac{1-\cos x}{ \sin x}|+C cscxdx=sinx1dx=lnsinx1cosx+C
  5. ∫ s e c 2 x d x = ∫ 1 cos ⁡ 2 x d x = tan ⁡ x + C \int sec^2xdx = \int \frac{1}{\cos ^2x}dx = \tan x +C sec2xdx=cos2x1dx=tanx+C
  6. ∫ c s c 2 d x = ∫ 1 sin ⁡ 2 x d x = − cot ⁡ x + C \int csc^2dx = \int \frac{1}{\sin^2x}dx = -\cot x+C csc2dx=sin2x1dx=cotx+C

二、三角函数代换求二次积分

  1. ∫ d x a 2 − x 2 = arcsin ⁡ x a + C \int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a}+C a2x2
    dx
    =
    arcsinax+C

∫ d x a 2 − x 2   x = a sin ⁡ t ‾ ‾   ∫ d   a sin ⁡ t a 2 − a 2 sin ⁡ 2 t = ∫ 1   d t = t + C      t = arcsin ⁡ x a ‾ ‾      arcsin ⁡ x + C \int \frac{dx}{\sqrt{a^2-x^2}}\,\underline{\underline{x =a\sin t}}\,\int\frac{d\,a\sin t}{\sqrt{a^2-a^2\sin^2t}} = \int 1\,dt = t+C \,\,\,\,\underline{\underline{t = \arcsin \frac{x}{a}}}\,\,\,\,\arcsin x+C a2x2
dx
x=asinta2a2sin2t
dasint
=
1dt=t+Ct=arcsinaxarcsinx+C

  1. ∫ d x a 2 + x 2 = 1 a arctan ⁡ x a + C \int\frac{dx}{a^2+x^2} = \frac{1}{a}\arctan\frac{x}{a}+C a2+x2dx=a1arctanax+C

∫ d x a 2 + x 2   x = a tan ⁡ t ‾ ‾   ∫ d   a tan ⁡ t a 2 + a 2 tan ⁡ 2 t = ∫ a sec ⁡ 2 t d t a 2 sec ⁡ 2 t = t a + C      t = arctan ⁡ x a ‾ ‾      1 a arctan ⁡ x a + C \int\frac{dx}{a^2+x^2}\,\underline{\underline{x =a\tan t}}\,\int\frac{d\,a\tan t}{a^2+a^2\tan^2t} = \int\frac{a\sec^2tdt}{a^2\sec^2t} = \frac {t}{a}+C \,\,\,\,\underline{\underline{t = \arctan \frac{x}{a}}}\,\,\,\, \frac{1}{a}\arctan \frac{x}{a}+C a2+x2dxx=atanta2+a2tan2tdatant=a2sec2tasec2tdt=at+Ct=arctanaxa1arctanax+C

  1. ∫ d x x 2 − a 2 = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \frac{dx}{x^2-a^2} = \frac{1}{2a}\ln|\frac{x-a}{x+a}|+C x2a2dx=2a1lnx+axa+C

∫ d x x 2 − a 2 = ∫ d x ( x − a ) ( x + a ) = 1 2 a ∫ ( 1 x − a − 1 x + a ) d a = 1 2 a [ ln ⁡ ∣ x − a ∣ − l n ∣ x + a ∣ ] + C = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C \int \frac{dx}{x^2-a^2} = \int \frac{dx}{(x-a)(x+a)} = \frac{1}{2a}\int (\frac{1}{x-a}-\frac{1}{x+a})da = \frac{1}{2a}[\ln|x-a|-ln|x+a|]+C = \frac{1}{2a}\ln|\frac{x-a}{x+a}|+C x2a2dx=(xa)(x+a)dx=2a1(xa1x+a1)da=2a1[lnxalnx+a]+C=2a1lnx+axa+C

  1. ∫ d x x 2 − a 2 = ln ⁡ ( x + x 2 − a 2 ) + C \int \frac{dx}{\sqrt{x^2-a^2}} = \ln(x+\sqrt{x^2-a^2})+C x2a2
    dx
    =
    ln(x+x2a2
    )+
    C

∫ d x x 2 − a 2      x = a sec ⁡ t ‾ ‾      ∫ d   a sec ⁡ t a 2 sec ⁡ 2 t − a 2 = ∫ a sec ⁡ t tan ⁡ t   d t a tan ⁡ t = ∫ sec ⁡ t   d t = ln ⁡ ∣ 1 + sin ⁡ t cos ⁡ t ∣ + C ∵ x = a sec ⁡ t ( 画 三 角 形 ) ∴ sec ⁡ t = x a        ,     tan ⁡ t = x 2 − a 2 a ∴ ln ⁡ ∣ 1 + sin ⁡ t cos ⁡ t ∣ + C = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C = ln ⁡ ∣ x + x 2 − a 2 ∣ − ln ⁡ ∣ a ∣ + C = ln ⁡ ( x + x 2 − a 2 ) + C \int \frac{dx}{\sqrt{x^2-a^2}} \,\,\,\,\underline{\underline{x = a\sec t}}\,\,\,\,\int\frac{d\,a\sec t}{\sqrt{a^2\sec^2t-a^2}} = \int\frac{a\sec t \tan t\,dt}{a\tan t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\sec t(画三角形)\\ \therefore \sec t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\tan t = \frac{\sqrt{x^2-a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2-a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2-a^2})+C x2a2
dx
x=asecta2sec2ta2
dasect
=
atantasecttantdt=sectdt=lncost1+sint+Cx=asect(sect=ax,tant=ax2a2
lncost1+sint+C=lnsect+tant+C=lnx+x2a2
lna+C=ln(x+x2a2
)+
C

  1. ∫ d x x 2 + a 2 = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{x^2+a^2}} = \ln(x+\sqrt{x^2+a^2})+C x2+a2
    dx
    =
    ln(x+x2+a2
    )+
    C

∫ d x x 2 + a 2      x = a tan ⁡ t ‾ ‾      ∫ d   a tan ⁡ t a 2 tan ⁡ 2 t + a 2 = ∫ a sec ⁡ 2 t   d t a sec ⁡ t = ∫ sec ⁡ t   d t = ln ⁡ ∣ 1 + sin ⁡ t cos ⁡ t ∣ + C ∵ x = a tan ⁡ t ( 画 三 角 形 ) ∴ tan ⁡ t = x a        ,     sec ⁡ t = x 2 + a 2 a ∴ ln ⁡ ∣ 1 + sin ⁡ t cos ⁡ t ∣ + C = ln ⁡ ∣ sec ⁡ t + tan ⁡ t ∣ + C = ln ⁡ ∣ x + x 2 + a 2 ∣ − ln ⁡ ∣ a ∣ + C = ln ⁡ ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{x^2+a^2}} \,\,\,\,\underline{\underline{x = a\tan t}}\,\,\,\,\int\frac{d\,a\tan t}{\sqrt{a^2\tan^2t+a^2}} = \int\frac{a\sec^2t \,dt}{a\sec t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\tan t(画三角形)\\ \therefore \tan t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\sec t = \frac{\sqrt{x^2+a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2+a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2+a^2})+C x2+a2
dx
x=atanta2tan2t+a2
datant
=
asectasec2tdt=sectdt=lncost1+sint+Cx=atant(tant=ax,sect=ax2+a2
lncost1+sint+C=lnsect+tant+C=lnx+x2+a2
lna+C=ln(x+x2+a2
)+
C

  1. ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + 1 2 x a 2 − x 2 + C \int\sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{1}{2}x\sqrt{a^2-x^2}+C a2x2
    dx=
    2a2arcsinax+21xa2x2
    +
    C

∫ a 2 − x 2 d x = x a 2 − x 2 − ∫ x d a 2 − x 2 = x a 2 − x 2 + ∫ x 2 a 2 − x 2 d x = x a 2 − x 2 + ∫ x 2 − a 2 + a 2 a 2 − x 2 d x = x a 2 − x 2 − ∫ a 2 − x 2 d x + ∫ a 2 a 2 − x 2 d x ∴ 2 ∫ a 2 − x 2 d x = x a 2 − x 2 + a 2 arcsin ⁡ x a + C ∴ ∫ a 2 − x 2 d x = a 2 2 arcsin ⁡ x a + 1 2 x a 2 − x 2 + C \int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}-\int xd\sqrt{a^2-x^2} = x\sqrt{a^2-x^2} + \int \frac{x^2}{\sqrt{a^2-x^2}}dx = x\sqrt{a^2-x^2} + \int \frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx\\ = x\sqrt{a^2-x^2} – \int \sqrt{a^2-x^2}dx+\int \frac{a^2}{\sqrt{a^2-x^2}}dx\\ \therefore 2\int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}+a^2\arcsin \frac{x}{a}+C\\ \therefore \int\sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{1}{2}x\sqrt{a^2-x^2}+C a2x2
dx=
xa2x2
xda2x2
=
xa2x2
+
a2x2
x2
dx=
xa2x2
+
a2x2
x2a2+a2
dx
=xa2x2
a2x2
dx+
a2x2
a2
dx
2a2x2
dx=
xa2x2
+
a2arcsinax+Ca2x2
dx=
2a2arcsinax+21xa2x2
+
C

三、常用变换

  1. sin ⁡ x = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 \sin x = \frac{2\tan \frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=1+tan22x2tan2x

sin ⁡ x = 2 sin ⁡ x 2 cos ⁡ x 2 = 2 sin ⁡ x 2 cos ⁡ x 2 1 cos ⁡ 2 x 2 = 2 tan ⁡ x 2 1 + tan ⁡ 2 x 2 \sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}}{\frac{1}{\cos^2\frac{x}{2}}} = \frac{2\tan \frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=2sin2xcos2x=cos22x12cos2xsin2x=1+tan22x2tan2x

  1. 1 + cos ⁡ x = 2 cos ⁡ 2 x 2 1+\cos x = 2\cos^2\frac{x}{2} 1+cosx=2cos22x(二倍角公式)

  2. ∫ d x 1 + cos ⁡ x = ∫ 1 − cos ⁡ x 1 − cos ⁡ 2 x d x = ∫ 1 − cos ⁡ x sin ⁡ 2 x d x = 1 − cos ⁡ x sin ⁡ x + C \int\frac{dx}{1+\cos x} = \int\frac{1-\cos x}{1-\cos^2x}dx = \int\frac{1-\cos x}{\sin^2x}dx = \frac{1-\cos x}{\sin x}+C 1+cosxdx=1cos2x1cosxdx=sin2x1cosxdx=sinx1cosx+C

  3. 待更新

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/20573.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信