大家好,欢迎来到IT知识分享网。
不定积分公式
一、记忆部分
- ∫ tan x d x = − ln ∣ cos x ∣ + C \int{\tan x}dx = -\ln |\cos x|+C ∫tanxdx=−ln∣cosx∣+C
- ∫ cot x d x = ln ∣ sin x ∣ + C \int \cot xdx = \ln |\sin x|+C ∫cotxdx=ln∣sinx∣+C
- ∫ sec x d x = ∫ 1 cos x d x = ln ∣ 1 + sin x cos x ∣ + C \int \sec x dx =\int \frac{1}{\cos x}dx= \ln | \frac{1+\sin x}{\cos x}|+C ∫secxdx=∫cosx1dx=ln∣cosx1+sinx∣+C
- ∫ csc x d x = ∫ 1 sin x d x = ln ∣ 1 − cos x sin x ∣ + C \int \csc xdx = \int \frac{1}{\sin x}dx = \ln |\frac{1-\cos x}{ \sin x}|+C ∫cscxdx=∫sinx1dx=ln∣sinx1−cosx∣+C
- ∫ s e c 2 x d x = ∫ 1 cos 2 x d x = tan x + C \int sec^2xdx = \int \frac{1}{\cos ^2x}dx = \tan x +C ∫sec2xdx=∫cos2x1dx=tanx+C
- ∫ c s c 2 d x = ∫ 1 sin 2 x d x = − cot x + C \int csc^2dx = \int \frac{1}{\sin^2x}dx = -\cot x+C ∫csc2dx=∫sin2x1dx=−cotx+C
二、三角函数代换求二次积分
- ∫ d x a 2 − x 2 = arcsin x a + C \int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a}+C ∫a2−x2dx=arcsinax+C
∫ d x a 2 − x 2 x = a sin t ‾ ‾ ∫ d a sin t a 2 − a 2 sin 2 t = ∫ 1 d t = t + C t = arcsin x a ‾ ‾ arcsin x + C \int \frac{dx}{\sqrt{a^2-x^2}}\,\underline{\underline{x =a\sin t}}\,\int\frac{d\,a\sin t}{\sqrt{a^2-a^2\sin^2t}} = \int 1\,dt = t+C \,\,\,\,\underline{\underline{t = \arcsin \frac{x}{a}}}\,\,\,\,\arcsin x+C ∫a2−x2dxx=asint∫a2−a2sin2tdasint=∫1dt=t+Ct=arcsinaxarcsinx+C
- ∫ d x a 2 + x 2 = 1 a arctan x a + C \int\frac{dx}{a^2+x^2} = \frac{1}{a}\arctan\frac{x}{a}+C ∫a2+x2dx=a1arctanax+C
∫ d x a 2 + x 2 x = a tan t ‾ ‾ ∫ d a tan t a 2 + a 2 tan 2 t = ∫ a sec 2 t d t a 2 sec 2 t = t a + C t = arctan x a ‾ ‾ 1 a arctan x a + C \int\frac{dx}{a^2+x^2}\,\underline{\underline{x =a\tan t}}\,\int\frac{d\,a\tan t}{a^2+a^2\tan^2t} = \int\frac{a\sec^2tdt}{a^2\sec^2t} = \frac {t}{a}+C \,\,\,\,\underline{\underline{t = \arctan \frac{x}{a}}}\,\,\,\, \frac{1}{a}\arctan \frac{x}{a}+C ∫a2+x2dxx=atant∫a2+a2tan2tdatant=∫a2sec2tasec2tdt=at+Ct=arctanaxa1arctanax+C
- ∫ d x x 2 − a 2 = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{dx}{x^2-a^2} = \frac{1}{2a}\ln|\frac{x-a}{x+a}|+C ∫x2−a2dx=2a1ln∣x+ax−a∣+C
∫ d x x 2 − a 2 = ∫ d x ( x − a ) ( x + a ) = 1 2 a ∫ ( 1 x − a − 1 x + a ) d a = 1 2 a [ ln ∣ x − a ∣ − l n ∣ x + a ∣ ] + C = 1 2 a ln ∣ x − a x + a ∣ + C \int \frac{dx}{x^2-a^2} = \int \frac{dx}{(x-a)(x+a)} = \frac{1}{2a}\int (\frac{1}{x-a}-\frac{1}{x+a})da = \frac{1}{2a}[\ln|x-a|-ln|x+a|]+C = \frac{1}{2a}\ln|\frac{x-a}{x+a}|+C ∫x2−a2dx=∫(x−a)(x+a)dx=2a1∫(x−a1−x+a1)da=2a1[ln∣x−a∣−ln∣x+a∣]+C=2a1ln∣x+ax−a∣+C
- ∫ d x x 2 − a 2 = ln ( x + x 2 − a 2 ) + C \int \frac{dx}{\sqrt{x^2-a^2}} = \ln(x+\sqrt{x^2-a^2})+C ∫x2−a2dx=ln(x+x2−a2)+C
∫ d x x 2 − a 2 x = a sec t ‾ ‾ ∫ d a sec t a 2 sec 2 t − a 2 = ∫ a sec t tan t d t a tan t = ∫ sec t d t = ln ∣ 1 + sin t cos t ∣ + C ∵ x = a sec t ( 画 三 角 形 ) ∴ sec t = x a , tan t = x 2 − a 2 a ∴ ln ∣ 1 + sin t cos t ∣ + C = ln ∣ sec t + tan t ∣ + C = ln ∣ x + x 2 − a 2 ∣ − ln ∣ a ∣ + C = ln ( x + x 2 − a 2 ) + C \int \frac{dx}{\sqrt{x^2-a^2}} \,\,\,\,\underline{\underline{x = a\sec t}}\,\,\,\,\int\frac{d\,a\sec t}{\sqrt{a^2\sec^2t-a^2}} = \int\frac{a\sec t \tan t\,dt}{a\tan t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\sec t(画三角形)\\ \therefore \sec t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\tan t = \frac{\sqrt{x^2-a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2-a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2-a^2})+C ∫x2−a2dxx=asect∫a2sec2t−a2dasect=∫atantasecttantdt=∫sectdt=ln∣cost1+sint∣+C∵x=asect(画三角形)∴sect=ax,tant=ax2−a2∴ln∣cost1+sint∣+C=ln∣sect+tant∣+C=ln∣x+x2−a2∣−ln∣a∣+C=ln(x+x2−a2)+C
- ∫ d x x 2 + a 2 = ln ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{x^2+a^2}} = \ln(x+\sqrt{x^2+a^2})+C ∫x2+a2dx=ln(x+x2+a2)+C
∫ d x x 2 + a 2 x = a tan t ‾ ‾ ∫ d a tan t a 2 tan 2 t + a 2 = ∫ a sec 2 t d t a sec t = ∫ sec t d t = ln ∣ 1 + sin t cos t ∣ + C ∵ x = a tan t ( 画 三 角 形 ) ∴ tan t = x a , sec t = x 2 + a 2 a ∴ ln ∣ 1 + sin t cos t ∣ + C = ln ∣ sec t + tan t ∣ + C = ln ∣ x + x 2 + a 2 ∣ − ln ∣ a ∣ + C = ln ( x + x 2 + a 2 ) + C \int \frac{dx}{\sqrt{x^2+a^2}} \,\,\,\,\underline{\underline{x = a\tan t}}\,\,\,\,\int\frac{d\,a\tan t}{\sqrt{a^2\tan^2t+a^2}} = \int\frac{a\sec^2t \,dt}{a\sec t} = \int \sec t\,dt =\ln |\frac{1+\sin t}{ \cos t}|+C \\ \because x = a\tan t(画三角形)\\ \therefore \tan t = \frac{x}{a}\,\,\,\,\,\,,\,\,\,\sec t = \frac{\sqrt{x^2+a^2}}{a}\\ \therefore\ln |\frac{1+\sin t}{ \cos t}|+C = \ln|\sec t+\tan t|+C = \ln|x+\sqrt{x^2+a^2}|-\ln|a|+C = \ln(x+\sqrt{x^2+a^2})+C ∫x2+a2dxx=atant∫a2tan2t+a2datant=∫asectasec2tdt=∫sectdt=ln∣cost1+sint∣+C∵x=atant(画三角形)∴tant=ax,sect=ax2+a2∴ln∣cost1+sint∣+C=ln∣sect+tant∣+C=ln∣x+x2+a2∣−ln∣a∣+C=ln(x+x2+a2)+C
- ∫ a 2 − x 2 d x = a 2 2 arcsin x a + 1 2 x a 2 − x 2 + C \int\sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{1}{2}x\sqrt{a^2-x^2}+C ∫a2−x2dx=2a2arcsinax+21xa2−x2+C
∫ a 2 − x 2 d x = x a 2 − x 2 − ∫ x d a 2 − x 2 = x a 2 − x 2 + ∫ x 2 a 2 − x 2 d x = x a 2 − x 2 + ∫ x 2 − a 2 + a 2 a 2 − x 2 d x = x a 2 − x 2 − ∫ a 2 − x 2 d x + ∫ a 2 a 2 − x 2 d x ∴ 2 ∫ a 2 − x 2 d x = x a 2 − x 2 + a 2 arcsin x a + C ∴ ∫ a 2 − x 2 d x = a 2 2 arcsin x a + 1 2 x a 2 − x 2 + C \int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}-\int xd\sqrt{a^2-x^2} = x\sqrt{a^2-x^2} + \int \frac{x^2}{\sqrt{a^2-x^2}}dx = x\sqrt{a^2-x^2} + \int \frac{x^2-a^2+a^2}{\sqrt{a^2-x^2}}dx\\ = x\sqrt{a^2-x^2} – \int \sqrt{a^2-x^2}dx+\int \frac{a^2}{\sqrt{a^2-x^2}}dx\\ \therefore 2\int\sqrt{a^2-x^2}dx = x\sqrt{a^2-x^2}+a^2\arcsin \frac{x}{a}+C\\ \therefore \int\sqrt{a^2-x^2}dx = \frac{a^2}{2}\arcsin{\frac{x}{a}}+\frac{1}{2}x\sqrt{a^2-x^2}+C ∫a2−x2dx=xa2−x2−∫xda2−x2=xa2−x2+∫a2−x2x2dx=xa2−x2+∫a2−x2x2−a2+a2dx=xa2−x2−∫a2−x2dx+∫a2−x2a2dx∴2∫a2−x2dx=xa2−x2+a2arcsinax+C∴∫a2−x2dx=2a2arcsinax+21xa2−x2+C
三、常用变换
- sin x = 2 tan x 2 1 + tan 2 x 2 \sin x = \frac{2\tan \frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=1+tan22x2tan2x
sin x = 2 sin x 2 cos x 2 = 2 sin x 2 cos x 2 1 cos 2 x 2 = 2 tan x 2 1 + tan 2 x 2 \sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} = \frac{2\frac{\sin\frac{x}{2}}{\cos\frac{x}{2}}}{\frac{1}{\cos^2\frac{x}{2}}} = \frac{2\tan \frac{x}{2}}{1+\tan^2\frac{x}{2}} sinx=2sin2xcos2x=cos22x12cos2xsin2x=1+tan22x2tan2x
-
1 + cos x = 2 cos 2 x 2 1+\cos x = 2\cos^2\frac{x}{2} 1+cosx=2cos22x(二倍角公式)
-
∫ d x 1 + cos x = ∫ 1 − cos x 1 − cos 2 x d x = ∫ 1 − cos x sin 2 x d x = 1 − cos x sin x + C \int\frac{dx}{1+\cos x} = \int\frac{1-\cos x}{1-\cos^2x}dx = \int\frac{1-\cos x}{\sin^2x}dx = \frac{1-\cos x}{\sin x}+C ∫1+cosxdx=∫1−cos2x1−cosxdx=∫sin2x1−cosxdx=sinx1−cosx+C
-
待更新
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/20573.html