Dijkstra算法(matlab)[亲测有效]

Dijkstra算法(matlab)[亲测有效]Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。function[distancepath]=Dijk(W,st,e)%DIJKSumm…

大家好,欢迎来到IT知识分享网。

Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。

算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。

Dijkstra算法(matlab)[亲测有效]

在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。

function [ distance path] = Dijk( W,st,e )
%DIJK Summary of this function goes here
%   W  权值矩阵   st 搜索的起点   e 搜索的终点
n=length(W);%节点数
D = W(st,:);
visit= ones(1:n); visit(st)=0;
parent = zeros(1,n);%记录每个节点的上一个节点

path =[];

for i=1:n-1
    temp = [];
    %从起点出发,找最短距离的下一个点,每次不会重复原来的轨迹,设置visit判断节点是否访问
    for j=1:n
       if visit(j)
           temp =[temp D(j)];
       else
           temp =[temp inf];
       end
       
    end
    
    [value,index] = min(temp);
   
    visit(index) = 0;
    
    %更新 如果经过index节点,从起点到每个节点的路径长度更小,则更新,记录前趋节点,方便后面回溯循迹
    for k=1:n
        if D(k)>D(index)+W(index,k)
           D(k) = D(index)+W(index,k);
           parent(k) = index;
        end
    end
    
   
end

distance = D(e);%最短距离
%回溯法  从尾部往前寻找搜索路径
t = e;
while t~=st && t>0
 path =[t,path];
  p=parent(t);t=p;
end
path =[st,path];%最短路径


end

测试:

测试用例1

W=[0 50 inf 40 25 10
    50 0 15 20 inf 25
    inf 15 0 10 20 inf 
    40 20 10 0 10 25
    25 inf 20 10 0 55
    10 25 inf 25 55 0];
[distance,path]=Dijk(W,1,4);

>> distance

distance =

    35

>> path

path =

     1     6     4

从节点1到节点4最短距离路径为1–>6–>4, 最短距离为35

测试用例2

W=[0 1 3 4
    1 0 2 inf
    3 2 0 5
    4 inf 5 0];
[distance,path]=Dijk(W,2,4);

>> distance

distance =

     5

>> path

path =

     2     1     4

从节点2到节点4最短距离路径为2–>1–>4, 最短距离为5

java版dijkstra

import java.util.HashMap;
import java.util.Map;

/**
 * Created by zhangjackie on 18/5/2.
 */
public class DijkstraShortPath {
    private static final int N = 1000;
    private static int[][] graph = {
            {0, 7, 9, N, N, 14},
            {7, 0, 10, 15, N, N},
            {9, 10, 0, 11, N, 2},
            {N, 15, 11, 0, 6, N},
            {N, N, N, 6, 0, 9},
            {14, N, 2, N, 9, 0}
    };

    private static void dijkstra(int vstart, int[][] graph) {
        int n = graph.length;
        int[] dist = new int[n];
        boolean[] visit = new boolean[n];
        int[] prev = new int[n];
        Map<Integer, String> path = new HashMap<Integer, String>();
        int vnear = vstart;

        //初始化
        for (int i = 0; i < n; i++) {
            dist[i] = graph[vstart][i];
            visit[i] = false;
            prev[i] = vstart;
        }

        visit[vstart] = true;


        for (int i = 1; i < n; i++) {
            int min = N;
            //寻找最近的节点
            for (int j = 0; j < n; j++) {
                if (!visit[j] && dist[j] < min) {
                    min = dist[j];
                    vnear = j;
                }
            }

            visit[vnear] = true;

            //更新dist,记录前一执行节点
            for (int k = 0; k < n; k++) {
                int minDist = min + graph[vnear][k];
                if (!visit[k] && minDist < dist[k]) {
                    dist[k] = minDist;
                    prev[k] = vnear;
                }
            }
        }

        //打印最短路径
        for (int i = 0; i < n; i++) {
            int preprev = prev[i];
            path.put(i,Integer.toString(i));
            while (preprev != vstart) {
                String oldpath = path.get(i);
                path.put(i, preprev + "->" + oldpath);
                preprev = prev[preprev];
            }

            String oldpath = path.get(i);
            path.put(i,  vstart +"->" + oldpath);
        }

//        System.out.println(Arrays.toString(dist));
        for (int i = 0; i < n; i++) {
//            System.out.println("v" + vstart + "...v" + prev[i] + "->v" + i + ", s=" + dist[i]);
            System.out.println(path.get(i)  + ", s=" + dist[i]);
        }

    }


    public static void main(String[] args) {
        dijkstra(3, graph);
    }

}

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/25000.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信