样本方差是总体方差的无偏估计「建议收藏」

样本方差是总体方差的无偏估计「建议收藏」总体均值μ=1N∑xi\mu=\frac{1}{N}\sumx_iμ=N1​∑xi​,总体方差σ2=1N∑i(xi−μ)2\sigma^2=\frac{1}{N}\sum_i(x_i-\mu)^2σ2=N1​∑i​(xi​−μ)2样本均值xˉ=1n∑xi\bar{x}=\frac{1}{n}\sumx_ixˉ=n1​∑xi​,样本方差S2=1n−1∑i(xi−xˉ)2S^2=\frac{1}{n-1}\sum_i(x_i-\bar{x})^2S2=n−11​∑i

大家好,欢迎来到IT知识分享网。

总体均值 μ = 1 N ∑ x i \mu = \frac{1}{N}\sum x_i μ=N1xi, 总体方差 σ 2 = 1 N ∑ i ( x i − μ ) 2 \sigma^2 = \frac{1}{N}\sum_i (x_i – \mu)^2 σ2=N1i(xiμ)2

样本均值 x ˉ = 1 n ∑ x i \bar{x} = \frac{1}{n}\sum x_i xˉ=n1xi, 样本方差 S 2 = 1 n − 1 ∑ i ( x i − x ˉ ) 2 S^2 = \frac{1}{n-1}\sum_i (x_i – \bar{x})^2 S2=n11i(xixˉ)2


证明:
E ( S 2 ) = E ( 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) 2 ) = 1 n − 1 E ( ∑ i = 1 n ( x i − x ˉ ) 2 ) = 1 n − 1 E ( ∑ i = 1 n ( x i 2 − 2 x i x ˉ + x ˉ 2 ) ) = 1 n − 1 E ( ∑ i = 1 n x i 2 − n x ˉ 2 ) = 1 n − 1 ( ∑ i = 1 n E ( x i 2 ) − n E ( x ˉ 2 ) ) = 1 n − 1 ( ∑ i = 1 n E ( x i 2 ) − n E ( x ˉ 2 ) ) \begin{array}{ll} E(S^2) &= E\left(\frac{1}{n-1}\sum_{i=1}^n (x_i – \bar{x})^2 \right) \\\\ &=\frac{1}{n-1} E\left(\sum_{i=1}^n (x_i – \bar{x})^2 \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n (x_i^2 – 2x_i\bar{x} + \bar{x}^2) \right) \\\\ &= \frac{1}{n-1} E\left(\sum_{i=1}^n x_i^2 – n\bar{x}^2 \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) – nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) – nE(\bar{x}^2) \right) \\\\ \end{array} E(S2)=E(n11i=1n(xixˉ)2)=n11E(i=1n(xixˉ)2)=n11E(i=1n(xi22xixˉ+xˉ2))=n11E(i=1nxi2nxˉ2)=n11(i=1nE(xi2)nE(xˉ2))=n11(i=1nE(xi2)nE(xˉ2))


E ( x i 2 ) = D ( x i ) + E ( x i ) 2 = σ 2 + μ 2 E(x_i^2) = D(x_i) + E(x_i)^2 = \sigma^2 + \mu^2\\ E(xi2)=D(xi)+E(xi)2=σ2+μ2 E ( x ˉ 2 ) = D ( x ˉ ) + E ( x ˉ ) 2 = σ 2 n + μ 2 E(\bar{x}^2) = D(\bar{x}) + E(\bar{x})^2 = \frac{\sigma^2}{n} + \mu^2\\ E(xˉ2)=D(xˉ)+E(xˉ)2=nσ2+μ2

所以
E ( S 2 ) = 1 n − 1 ( ∑ i = 1 n E ( x i 2 ) − n E ( x ˉ 2 ) ) = 1 n − 1 ( n ( σ 2 + μ 2 ) − n ( σ 2 n + μ 2 ) ) = σ 2 \begin{array}{ll} E(S^2) &= \frac{1}{n-1} \left(\sum_{i=1}^n E(x_i^2) – nE(\bar{x}^2) \right) \\\\ &= \frac{1}{n-1} \left(n (\sigma^2 + \mu^2) – n(\frac{\sigma^2}{n} + \mu^2) \right) \\\\ &=\sigma^2 \end{array} E(S2)=n11(i=1nE(xi2)nE(xˉ2))=n11(n(σ2+μ2)n(nσ2+μ2))=σ2
证毕。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/26554.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信