java基础篇—新I/O技术(NIO)

java基础篇—新I/O技术(NIO)在JDK1.4以前,I/O输入输出处理,我们把它称为旧I/O处理,在JDK1.4开始,java提供了一系列改进的输入/输出新特性,这些功能被称为新I/O(NEWI/O),新添了许多用于处理输入/输出的类,这些类都被放在java.nio包及子包下,并且对原java.io包中的很多类以NIO为基础进行

大家好,欢迎来到IT知识分享网。

在JDK1.4以前,I/O输入输出处理,我们把它称为旧I/O处理,在JDK1.4开始,java提供了一系列改进的输入/输出新特性,这些功能被称为新I/O(NEW I/O),新添了许多用于处理输入/输出的类,这些类都被放在java.nio包及子包下,并且对原java.io包中的很多类以NIO为基础进行了改写,新添了满足新I/O的功能。

Java NIO和IO的主要区别

IO  NIO
面向流
面向缓冲
阻塞IO 
 非阻塞IO
选择器

面向缓冲(Buffer)

在整个Java的心I/O中,所以操作都是以缓冲区进行的,使操作的性能大大提高。

操作

在Buffer中存在一系列的状态变量,这状态变量随着写入或读取都可能会被概念,在缓冲区开元使用是三个值表示缓冲区的状态。

  • position:表示下个缓冲区读取或写入的操作指针,没向缓冲区中华写入数据的时候 此指针就会改变,指针永远放在写入的最后一个元素之后。即:如果写入了4个位置的数据,则posotion会指向第5个位置。
  • Limit:表示还有多少数据可以存储或读取,position<=limit
  • capacity:表示缓冲区的最大容量,limit<=capacity,此值在分配缓冲区时被设置。一般不改变。

创建缓冲区:

import java.nio.IntBuffer ;
public class IntBufferDemo{
    public static void main(String args[]){
        IntBuffer buf = IntBuffer.allocate(10) ;    // 准备出10个大小的缓冲区
        System.out.print("1、写入数据之前的position、limit和capacity:") ;
        System.out.println("position = " + buf.position() + ",limit = " + buf.limit() + ",capacty = " + buf.capacity()) ;
        int temp[] = {5,7,9} ;// 定义一个int数组
        buf.put(3) ;    // 设置一个数据
        buf.put(temp) ;    // 此时已经存放了四个记录
        System.out.print("2、写入数据之后的position、limit和capacity:") ;
        System.out.println("position = " + buf.position() + ",limit = " + buf.limit() + ",capacty = " + buf.capacity()) ;

        buf.flip() ;    // 重设缓冲区
        // postion = 0 ,limit = 原本position
        System.out.print("3、准备输出数据时的position、limit和capacity:") ;
        System.out.println("position = " + buf.position() + ",limit = " + buf.limit() + ",capacty = " + buf.capacity()) ;
        System.out.print("缓冲区中的内容:") ;
        while(buf.hasRemaining()){
            int x = buf.get() ;
            System.out.print(x + "、") ;
        }
    }
}

如果创建了缓冲区,则JVM可直接对其执行本机的IO操作

import java.nio.ByteBuffer ;
public class ByteBufferDemo{
    public static void main(String args[]){
        ByteBuffer buf = ByteBuffer.allocateDirect(10) ;    // 准备出10个大小的缓冲区
        byte temp[] = {1,3,5,7,9} ;    // 设置内容
        buf.put(temp) ;    // 设置一组内容
        buf.flip() ;

        System.out.print("主缓冲区中的内容:") ;
        while(buf.hasRemaining()){
            int x = buf.get() ;
            System.out.print(x + "、") ;
        }
    }
}

通道(Channel)

Java NIO的非阻塞模式,使一个线程从某通道发送请求读取数据,但是它仅能得到目前可用的数据,如果目前没有数据可用时,就什么都不会获取。而不是保持线程阻塞,所以直至数据变的可以读取之前,该线程可以继续做其他的事情。 非阻塞写也是如此。一个线程请求写入一些数据到某通道,但不需要等待它完全写入,这个线程同时可以去做别的事情。 线程通常将非阻塞IO的空闲时间用于在其它通道上执行IO操作,所以一个单独的线程现在可以管理多个输入和输出通道(channel)。

Java NIO的通道类似流,但又有些不同:

  • 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。
  • 通道可以异步地读写。
  • 通道中的数据总是要先读到一个Buffer,或者总是要从一个Buffer中写入。

正如上面所说,从通道读取数据到缓冲区,从缓冲区写入数据到通道。

java基础篇---新I/O技术(NIO)

Channel的实现

这些是Java NIO中最重要的通道的实现:

  • FileChannel
  • DatagramChannel
  • SocketChannel
  • ServerSocketChannel

FileChannel 从文件中读写数据。

DatagramChannel 能通过UDP读写网络中的数据。

SocketChannel 能通过TCP读写网络中的数据。

ServerSocketChannel可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。

通过通道可以完成双向的输入和输出操作。在通道还有一种方式称为内存映射

几种读入的方式的比较

RandomAccessFile   较慢

FileInputStream     较慢

缓冲读取      速度较快
内存映射      速度最快

FileChannel内存映射实例

import java.nio.ByteBuffer ;
import java.nio.MappedByteBuffer ;
import java.nio.channels.FileChannel ;
import java.io.File ;
import java.io.FileOutputStream ;
import java.io.FileInputStream ;
public class FileChannelDemo03{
    public static void main(String args[]) throws Exception{
        File file = new File("d:" + File.separator + "oumyye.txt") ;  
        FileInputStream input = null ;
        input = new FileInputStream(file) ;
        FileChannel fin = null ;    // 定义输入的通道
        fin = input.getChannel() ;    // 得到输入的通道
        MappedByteBuffer mbb = null ; 
        mbb = fin.map(FileChannel.MapMode.READ_ONLY,0,file.length()) ;
        byte data[] = new byte[(int)file.length()] ;    // 开辟空间接收内容
        int foot = 0 ;
        while(mbb.hasRemaining()){
            data[foot++] = mbb.get() ;    // 读取数据
        }
        System.out.println(new String(data)) ;    // 输出内容
        fin.close() ;
        input.close() ;
    }
}

操作以上代码的时候,执行的是写入操作则可能是非常危险的,因为仅仅只是改变数组中的单个元素这种简单的操作,就可能直接修改磁盘上的文件,因为修改数据与数据保存在磁盘上是一样的。

 

选择器(Selectors

Selector(选择器)是Java NIO中能够检测一到多个NIO通道,并能够知晓通道是否为诸如读写事件做好准备的组件。这样,一个单独的线程可以管理多个channel,从而管理多个网络连接。

为什么使用Selector?

仅用单个线程来处理多个Channels的好处是,只需要更少的线程来处理通道。事实上,可以只用一个线程处理所有的通道。对于操作系统来说,线程之间上下文切换的开销很大,而且每个线程都要占用系统的一些资源(如内存)。因此,使用的线程越少越好。

但是,需要记住,现代的操作系统和CPU在多任务方面表现的越来越好,所以多线程的开销随着时间的推移,变得越来越小了。实际上,如果一个CPU有多个内核,不使用多任务可能是在浪费CPU能力。不管怎么说,关于那种设计的讨论应该放在另一篇不同的文章中。在这里,只要知道使用Selector能够处理多个通道就足够了。

要点

使用Selector可以构建一个非阻塞的网络服务。

在新IO实现网络程序需要依靠ServerSocketChannel类与SocketChannel

Selector实例

下面使用Selector完成一个简单的服务器的操作,服务器可以同时在多个端口进行监听,此服务器的主要功能是返回当前时间。

import java.net.InetSocketAddress ;
import java.net.ServerSocket ;
import java.util.Set ;
import java.util.Iterator ;
import java.util.Date ;
import java.nio.channels.ServerSocketChannel ;
import java.nio.ByteBuffer ;
import java.nio.channels.SocketChannel ;
import java.nio.channels.Selector  ;
import java.nio.channels.SelectionKey  ;
public class DateServer{
    public static void main(String args[]) throws Exception {
        int ports[] = {8000,8001,8002,8003,8005,8006} ; // 表示五个监听端口
        Selector selector = Selector.open() ;    // 通过open()方法找到Selector
        for(int i=0;i<ports.length;i++){
            ServerSocketChannel initSer = null ;
            initSer = ServerSocketChannel.open() ;    // 打开服务器的通道
            initSer.configureBlocking(false) ;    // 服务器配置为非阻塞
            ServerSocket initSock = initSer.socket() ;
            InetSocketAddress address = null ;
            address = new InetSocketAddress(ports[i]) ;    // 实例化绑定地址
            initSock.bind(address) ;    // 进行服务的绑定
            initSer.register(selector,SelectionKey.OP_ACCEPT) ;    // 等待连接
            System.out.println("服务器运行,在" + ports[i] + "端口监听。") ;
        }
        // 要接收全部生成的key,并通过连接进行判断是否获取客户端的输出
        int keysAdd = 0 ;
        while((keysAdd=selector.select())>0){    // 选择一组键,并且相应的通道已经准备就绪
            Set<SelectionKey> selectedKeys = selector.selectedKeys() ;// 取出全部生成的key
            Iterator<SelectionKey> iter = selectedKeys.iterator() ;
            while(iter.hasNext()){
                SelectionKey key = iter.next() ;    // 取出每一个key
                if(key.isAcceptable()){
                    ServerSocketChannel server = (ServerSocketChannel)key.channel() ;
                    SocketChannel client = server.accept() ;    // 接收新连接
                    client.configureBlocking(false) ;// 配置为非阻塞
                    ByteBuffer outBuf = ByteBuffer.allocateDirect(1024) ;    //
                    outBuf.put(("当前的时间为:" + new Date()).getBytes()) ;    // 向缓冲区中设置内容
                    outBuf.flip() ;
                    client.write(outBuf) ;    // 输出内容
                    client.close() ;    // 关闭
                }
            }
            selectedKeys.clear() ;    // 清楚全部的key
        }
        
    }
}

服务器完成之后可以使用Telnet命令完成,这样就完成了一个一部的操作服务器。

 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/27884.html

(0)
上一篇 2023-12-02 21:45
下一篇 2023-12-03 07:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信