什么是向量积以及其几何意义

什么是向量积以及其几何意义什么是向量积?向量积,也称(向量)叉积,(向量)叉乘,外积,是一种在向量空间中对向量进行的二元运算。常见于物理学力学、电磁学、光学和计算机图形学等理工学科中,是一种很重要的概念。设向量\(\overrightarrow{c}\)由两个向量\(\overrightarrow{a}\)和\

大家好,欢迎来到IT知识分享网。

什么是向量积?

向量积,也称(向量)叉积,(向量)叉乘,外积,是一种在向量空间中对向量进行的二元运算。常见于物理学力学、电磁学、光学和计算机图形学等理工学科中,是一种很重要的概念。

设向量 \(\overrightarrow{c}\) 由两个向量 \(\overrightarrow{a}\)\(\overrightarrow{b}\) 按如下公式定出:\(\overrightarrow{c}\) 的模 \(|\overrightarrow{c}|=|\overrightarrow{a}||\overrightarrow{b}|sinθ\),其中 \(θ\)\(\overrightarrow{a}\)\(\overrightarrow{b}\) 间的夹角;\(\overrightarrow{c}\) 的方向垂直于 \(\overrightarrow{a}\)\(\overrightarrow{b}\) 所决定的平面,指向按右手规则从 \(\overrightarrow{a}\) 转向 \(\overrightarrow{b}\) 来确定,如下图:

什么是向量积以及其几何意义

那么,向量 \(\overrightarrow{c}\) 叫做向量 \(\overrightarrow{a}\)\(\overrightarrow{b}\) 的向量积,记作 \(\overrightarrow{a}×\overrightarrow{b}\)

由上述的定义,我们很容易总结出两条性质:

\[\begin{align} \overrightarrow{a}×\overrightarrow{b}&=\overrightarrow{0} \tag{其中 $\overrightarrow{a}$ 平行$\overrightarrow{b}$}\\ \overrightarrow{a}×\overrightarrow{b}&=- \overrightarrow{b}×\overrightarrow{a} \tag{不满足交换律} \end{align} \]

下面来推导向量积的坐标表达式,以二维向量为例。设 \(\overrightarrow{a}=(a_x, a_y),\overrightarrow{b}=(b_x, b_y)\),得:

什么是向量积以及其几何意义

仔细观察上式,得出:

  1. \(a_xb_y-a_yb_x>0\),则 \(\overrightarrow{b}\)\(\overrightarrow{a}\) 的逆时针方向上(参照 \(\overrightarrow{i}\)\(\overrightarrow{j}\) 的位置);
  2. \(a_xb_y-a_yb_x<0\),则 \(\overrightarrow{b}\)\(\overrightarrow{a}\) 的顺时针方向上;
  3. \(a_xb_y-a_yb_x=0\),则 \(\overrightarrow{a}\)\(\overrightarrow{b}\) 共线,但是否同向不确定。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/27997.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信