图像二值化如何选取阈值_halcon算法

图像二值化如何选取阈值_halcon算法图像算法:图像阈值分割SkySeraphDec21st2010HQUEmail:zgzhaobo@gmail.comQQ:452728574LatestModifiedDate:Dec.21st2010HQU更多精彩请直接访问SkySeraph个人站点:www.skyser

大家好,欢迎来到IT知识分享网。

图像算法:图像阈值分割

SkySeraph Dec 21st 2010  HQU

Email:zgzhaobo@gmail.com    QQ:452728574

Latest Modified Date:Dec.21st 2010 HQU

更多精彩请直接访问SkySeraph个人站点:www.skyseraph.com 

 图像算法系列: http://skyseraph.com/2011/08/27/CV/图像算法专题/ 

一、工具:VC+OpenCV

二、语言:C++

三、原理(略)

四、程序

主程序(核心部分) 

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
===============================图像分割=====================================
*/


2
/*
—————————————————————————
*/


3
/*
手动设置阀值
*/


4
IplImage
*
binaryImg
=
cvCreateImage(cvSize(w, h),IPL_DEPTH_8U,
1
);

5
cvThreshold(smoothImgGauss,binaryImg,
71
,
255
,CV_THRESH_BINARY);

6
cvNamedWindow(

cvThreshold

, CV_WINDOW_AUTOSIZE );

7
cvShowImage(

cvThreshold

, binaryImg );

8
//
cvReleaseImage(&binaryImg);


9
 
/*
—————————————————————————
*/


10
/*
自适应阀值 //计算像域邻域的平均灰度,来决定二值化的值
*/


11
IplImage
*
adThresImg
=
cvCreateImage(cvSize(w, h),IPL_DEPTH_8U,
1
);

12
double
max_value
=
255
;

13
int
adpative_method
=
CV_ADAPTIVE_THRESH_GAUSSIAN_C;
//
CV_ADAPTIVE_THRESH_MEAN_C


14
 
int
threshold_type
=
CV_THRESH_BINARY;

15
int
block_size
=
3
;
//
阈值的象素邻域大小


16
 
int
offset
=
5
;
//
窗口尺寸


17
 
cvAdaptiveThreshold(smoothImgGauss,adThresImg,max_value,adpative_method,threshold_type,block_size,offset);

18
cvNamedWindow(

cvAdaptiveThreshold

, CV_WINDOW_AUTOSIZE );

19
cvShowImage(

cvAdaptiveThreshold

, adThresImg );

20
cvReleaseImage(
&
adThresImg);

21
/*
—————————————————————————
*/


22
/*
最大熵阀值分割法
*/


23
IplImage
*
imgMaxEntropy
=
cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,
1
);

24
MaxEntropy(smoothImgGauss,imgMaxEntropy);

25
cvNamedWindow(

MaxEntroyThreshold

, CV_WINDOW_AUTOSIZE );

26
cvShowImage(

MaxEntroyThreshold

, imgMaxEntropy );
//
显示图像


27
 
cvReleaseImage(
&
imgMaxEntropy );

28
/*
—————————————————————————
*/


29
/*
基本全局阀值法
*/


30
IplImage
*
imgBasicGlobalThreshold
=
cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,
1
);

31
cvCopyImage(srcImgGrey,imgBasicGlobalThreshold);

32
int
pg[
256
],i,thre;

33
for
(i
=
0
;i
<
256
;i
++
) pg[i]
=
0
;

34
for
(i
=
0
;i
<
imgBasicGlobalThreshold
->
imageSize;i
++
)
//
直方图统计


35
 
pg[(BYTE)imgBasicGlobalThreshold
->
imageData[i]]
++
;

36
thre
=
BasicGlobalThreshold(pg,
0
,
256
);
//
确定阈值


37
 
cout
<<

The Threshold of this Image in BasicGlobalThreshold is:

<<
thre
<<
endl;
//
输出显示阀值


38
 
cvThreshold(imgBasicGlobalThreshold,imgBasicGlobalThreshold,thre,
255
,CV_THRESH_BINARY);
//
二值化


39
 
cvNamedWindow(

BasicGlobalThreshold

, CV_WINDOW_AUTOSIZE );

40
cvShowImage(

BasicGlobalThreshold

, imgBasicGlobalThreshold);
//
显示图像


41
 
cvReleaseImage(
&
imgBasicGlobalThreshold);

42
/*
—————————————————————————
*/


43
/*
OTSU
*/


44
IplImage
*
imgOtsu
=
cvCreateImage(cvGetSize(imgGrey),IPL_DEPTH_8U,
1
);

45
cvCopyImage(srcImgGrey,imgOtsu);

46
int
thre2;

47
thre2
=
otsu2(imgOtsu);

48
cout
<<

The Threshold of this Image in Otsu is:

<<
thre2
<<
endl;
//
输出显示阀值


49
cvThreshold(imgOtsu,imgOtsu,thre2,
255
,CV_THRESH_BINARY);
//
二值化


50
cvNamedWindow(

imgOtsu

, CV_WINDOW_AUTOSIZE );

51
cvShowImage(

imgOtsu

, imgOtsu);
//
显示图像


52
cvReleaseImage(
&
imgOtsu);

53
/*
—————————————————————————
*/


54
/*
上下阀值法:利用正态分布求可信区间
*/


55
IplImage
*
imgTopDown
=
cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U,
1
);

56
cvCopyImage(srcImgGrey,imgTopDown);

57
CvScalar mean ,std_dev;
//
平均值、 标准差


58
double
u_threshold,d_threshold;

59
cvAvgSdv(imgTopDown,
&
mean,
&
std_dev,NULL);

60
u_threshold
=
mean.val[
0
]
+
2.5
*
std_dev.val[
0
];
//
上阀值


61
d_threshold
=
mean.val[
0
]

2.5
*
std_dev.val[
0
];
//
下阀值

62
//
u_threshold = mean + 2.5 * std_dev;
//
错误

63
//
d_threshold = mean – 2.5 * std_dev;


64
cout
<<

The TopThreshold of this Image in TopDown is:

<<
d_threshold
<<
endl;
//
输出显示阀值


65
cout
<<

The DownThreshold of this Image in TopDown is:

<<
u_threshold
<<
endl;

66
cvThreshold(imgTopDown,imgTopDown,d_threshold,u_threshold,CV_THRESH_BINARY_INV);
//
上下阀值


67
cvNamedWindow(

imgTopDown

, CV_WINDOW_AUTOSIZE );

68
cvShowImage(

imgTopDown

, imgTopDown);
//
显示图像


69
cvReleaseImage(
&
imgTopDown);

70
/*
—————————————————————————
*/


71
/*
迭代法
*/


72
IplImage
*
imgIteration
=
cvCreateImage( cvGetSize(imgGrey), IPL_DEPTH_8U,
1
);

73
cvCopyImage(srcImgGrey,imgIteration);

74
int
thre3,nDiffRec;

75
thre3
=
DetectThreshold(imgIteration,
100
, nDiffRec);

76
cout
<<

The Threshold of this Image in imgIteration is:

<<
thre3
<<
endl;
//
输出显示阀值


77
cvThreshold(imgIteration,imgIteration,thre3,
255
,CV_THRESH_BINARY_INV);
//
上下阀值


78
cvNamedWindow(

imgIteration

, CV_WINDOW_AUTOSIZE );

79
cvShowImage(

imgIteration

, imgIteration);

80
cvReleaseImage(
&
imgIteration);

模块程序

迭代法

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
======================================================================
*/


2
/*
迭代法
*/


3
/*
======================================================================
*/


4
//
nMaxIter:最大迭代次数;nDiffRec:使用给定阀值确定的亮区与暗区平均灰度差异值


5
int
DetectThreshold(IplImage
*
img,
int
nMaxIter,
int
&
iDiffRec)
//
阀值分割:迭代法


6
{

7
//
图像信息


8
int
height
=
img
->
height;

9
int
width
=
img
->
width;

10
int
step
=
img
->
widthStep
/
sizeof
(uchar);

11
uchar
*
data
=
(uchar
*
)img
->
imageData;

12


13
iDiffRec
=
0
;

14
int
F[
256
]
=
{
0
};
//
直方图数组


15
int
iTotalGray
=
0
;
//
灰度值和


16
int
iTotalPixel
=
0
;
//
像素数和


17
byte
bt;
//
某点的像素值


18


19
uchar iThrehold,iNewThrehold;
//
阀值、新阀值


20
uchar iMaxGrayValue
=
0
,iMinGrayValue
=
255
;
//
原图像中的最大灰度值和最小灰度值


21
uchar iMeanGrayValue1,iMeanGrayValue2;

22


23
//
获取(i,j)的值,存于直方图数组F


24
for
(
int
i
=
0
;i
<
width;i
++
)

25
{

26
for
(
int
j
=
0
;j
<
height;j
++
)

27
{

28
bt
=
data[i
*
step
+
j];

29
if
(bt
<
iMinGrayValue)

30
iMinGrayValue
=
bt;

31
if
(bt
>
iMaxGrayValue)

32
iMaxGrayValue
=
bt;

33
F[bt]
++
;

34
}

35
}

36


37
iThrehold
=
0
;
//

38
iNewThrehold
=
(iMinGrayValue
+
iMaxGrayValue)
/
2
;
//
初始阀值


39
iDiffRec
=
iMaxGrayValue

iMinGrayValue;

40


41
for
(
int
a
=
0
;(abs(iThrehold

iNewThrehold)
>
0.5
)
&&
a
<
nMaxIter;a
++
)
//
迭代中止条件


42
{

43
iThrehold
=
iNewThrehold;

44
//
小于当前阀值部分的平均灰度值


45
for
(
int
i
=
iMinGrayValue;i
<
iThrehold;i
++
)

46
{

47
iTotalGray
+=
F[i]
*
i;
//
F[]存储图像信息


48
iTotalPixel
+=
F[i];

49
}

50
iMeanGrayValue1
=
(uchar)(iTotalGray
/
iTotalPixel);

51
//
大于当前阀值部分的平均灰度值


52
iTotalPixel
=
0
;

53
iTotalGray
=
0
;

54
for
(
int
j
=
iThrehold
+
1
;j
<
iMaxGrayValue;j
++
)

55
{

56
iTotalGray
+=
F[j]
*
j;
//
F[]存储图像信息


57
iTotalPixel
+=
F[j];

58
}

59
iMeanGrayValue2
=
(uchar)(iTotalGray
/
iTotalPixel);

60


61
iNewThrehold
=
(iMeanGrayValue2
+
iMeanGrayValue1)
/
2
;
//
新阀值


62
iDiffRec
=
abs(iMeanGrayValue2

iMeanGrayValue1);

63
}

64


65
//
cout<<“The Threshold of this Image in imgIteration is:”<<iThrehold<<endl;


66
return
iThrehold;

67
}

68

  

Otsu代码一 

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
======================================================================
*/


2
/*
OTSU global thresholding routine
*/


3
/*
takes a 2D unsigned char array pointer, number of rows, and
*/


4
/*
number of cols in the array. returns the value of the threshold
*/


5
/*
parameter:

6
*image — buffer for image

7
rows, cols — size of image

8
x0, y0, dx, dy — region of vector used for computing threshold

9
vvv — debug option, is 0, no debug information outputed

10
*/


11
/*


12
OTSU 算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。

13
下面的代码最早由 Ryan Dibble提供,此后经过多人Joerg.Schulenburg, R.Z.Liu 等修改,补正。

14
算法对输入的灰度图像的直方图进行分析,将直方图分成两个部分,使得两部分之间的距离最大。

15
划分点就是求得的阈值。

16
*/


17
/*
======================================================================
*/


18
int
otsu (unsigned
char
*
image,
int
rows,
int
cols,
int
x0,
int
y0,
int
dx,
int
dy,
int
vvv)

19
{

20


21
unsigned
char
*
np;
//
图像指针


22
int
thresholdValue
=
1
;
//
阈值


23
int
ihist[
256
];
//
图像直方图,256个点


24


25
int
i, j, k;
//
various counters


26
int
n, n1, n2, gmin, gmax;

27
double
m1, m2, sum, csum, fmax, sb;

28


29
//
对直方图置零


30
memset(ihist,
0
,
sizeof
(ihist));

31


32
gmin
=
255
; gmax
=
0
;

33
//
生成直方图


34
for
(i
=
y0
+
1
; i
<
y0
+
dy

1
; i
++
)

35
{

36
np
=
(unsigned
char
*
)image[i
*
cols
+
x0
+
1
];

37
for
(j
=
x0
+
1
; j
<
x0
+
dx

1
; j
++
)

38
{

39
ihist[
*
np]
++
;

40
if
(
*
np
>
gmax) gmax
=*
np;

41
if
(
*
np
<
gmin) gmin
=*
np;

42
np
++
;
/*
next pixel
*/


43
}

44
}

45


46
//
set up everything


47
sum
=
csum
=
0.0
;

48
n
=
0
;

49


50
for
(k
=
0
; k
<=
255
; k
++
)

51
{

52
sum
+=
(
double
) k
*
(
double
) ihist[k];
/*
x*f(x) 质量矩
*/


53
n
+=
ihist[k];
/*
f(x) 质量
*/


54
}

55


56
if
(
!
n)

57
{

58
//
if n has no value, there is problems…


59
fprintf (stderr,

NOT NORMAL thresholdValue = 160\n

);

60
return
(
160
);

61
}

62


63
//
do the otsu global thresholding method


64
fmax
=

1.0
;

65
n1
=
0
;

66
for
(k
=
0
; k
<
255
; k
++
)

67
{

68
n1
+=
ihist[k];

69
if
(
!
n1)

70
{

71
continue
;

72
}

73
n2
=
n

n1;

74
if
(n2
==
0
)

75
{

76
break
;

77
}

78
csum
+=
(
double
) k
*
ihist[k];

79
m1
=
csum
/
n1;

80
m2
=
(sum

csum)
/
n2;

81
sb
=
(
double
) n1
*
(
double
) n2
*
(m1

m2)
*
(m1

m2);

82
/*
bbg: note: can be optimized.
*/


83
if
(sb
>
fmax)

84
{

85
fmax
=
sb;

86
thresholdValue
=
k;

87
}

88
}

89


90
//
at this point we have our thresholding value

91


92
//
debug code to display thresholding values


93
if
( vvv
&
1
)

94
fprintf(stderr,

# OTSU: thresholdValue = %d gmin=%d gmax=%d\n

,

95
thresholdValue, gmin, gmax);

96


97
return
(thresholdValue);

98
}

Otsu代码二 

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
======================================================================
*/


2
/*
OTSU global thresholding routine
*/


3
/*
======================================================================
*/


4
int
otsu2 (IplImage
*
image)

5
{

6
int
w
=
image
->
width;

7
int
h
=
image
->
height;

8


9
unsigned
char
*
np;
//
图像指针


10
unsigned
char
pixel;

11
int
thresholdValue
=
1
;
//
阈值


12
int
ihist[
256
];
//
图像直方图,256个点


13


14
int
i, j, k;
//
various counters


15
int
n, n1, n2, gmin, gmax;

16
double
m1, m2, sum, csum, fmax, sb;

17


18
//
对直方图置零…


19
memset(ihist,
0
,
sizeof
(ihist));

20


21
gmin
=
255
; gmax
=
0
;

22
//
生成直方图


23
for
(i
=
0
; i
<
h; i
++
)

24
{

25
np
=
(unsigned
char
*
)(image
->
imageData
+
image
->
widthStep
*
i);

26
for
(j
=
0
; j
<
w; j
++
)

27
{

28
pixel
=
np[j];

29
ihist[ pixel]
++
;

30
if
(pixel
>
gmax) gmax
=
pixel;

31
if
(pixel
<
gmin) gmin
=
pixel;

32
}

33
}

34


35
//
set up everything


36
sum
=
csum
=
0.0
;

37
n
=
0
;

38


39
for
(k
=
0
; k
<=
255
; k
++
)

40
{

41
sum
+=
k
*
ihist[k];
/*
x*f(x) 质量矩
*/


42
n
+=
ihist[k];
/*
f(x) 质量
*/


43
}

44


45
if
(
!
n)

46
{

47
//
if n has no value, there is problems…

48
//
fprintf (stderr, “NOT NORMAL thresholdValue = 160\n”);


49
thresholdValue
=
160
;

50
goto
L;

51
}

52


53
//
do the otsu global thresholding method


54
fmax
=

1.0
;

55
n1
=
0
;

56
for
(k
=
0
; k
<
255
; k
++
)

57
{

58
n1
+=
ihist[k];

59
if
(
!
n1) {
continue
; }

60
n2
=
n

n1;

61
if
(n2
==
0
) {
break
; }

62
csum
+=
k
*
ihist[k];

63
m1
=
csum
/
n1;

64
m2
=
(sum

csum)
/
n2;

65
sb
=
n1
*
n2
*
(m1

m2)
*
(m1

m2);

66
/*
bbg: note: can be optimized.
*/


67
if
(sb
>
fmax)

68
{

69
fmax
=
sb;

70
thresholdValue
=
k;

71
}

72
}

73


74
L:

75
for
(i
=
0
; i
<
h; i
++
)

76
{

77
np
=
(unsigned
char
*
)(image
->
imageData
+
image
->
widthStep
*
i);

78
for
(j
=
0
; j
<
w; j
++
)

79
{

80
if
(np[j]
>=
thresholdValue)

81
np[j]
=
255
;

82
else
np[j]
=
0
;

83
}

84
}

85


86
//
cout<<“The Threshold of this Image in Otsu is:”<<thresholdValue<<endl;


87
return
(thresholdValue);

88
}

 

最大熵阀值 

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
============================================================================

2
= 代码内容:最大熵阈值分割

3
= 修改日期:2009-3-3

4
= 作者:crond123

5
= 博客:
http://blog.csdn.net/crond123/


6
= E_Mail:crond123@163.com

7
===============================================================================
*/


8
//
计算当前位置的能量熵


9
double
caculateCurrentEntropy(CvHistogram
*
Histogram1,
int
cur_threshold,entropy_state state)

10
{

11
int
start,end;

12
int
total
=
0
;

13
double
cur_entropy
=
0.0
;

14
if
(state
==
back)

15
{

16
start
=
0
;

17
end
=
cur_threshold;

18
}

19
else


20
{

21
start
=
cur_threshold;

22
end
=
256
;

23
}

24
for
(
int
i
=
start;i
<
end;i
++
)

25
{

26
total
+=
(
int
)cvQueryHistValue_1D(Histogram1,i);
//
查询直方块的值 P304


27
}

28
for
(
int
j
=
start;j
<
end;j
++
)

29
{

30
if
((
int
)cvQueryHistValue_1D(Histogram1,j)
==
0
)

31
continue
;

32
double
percentage
=
cvQueryHistValue_1D(Histogram1,j)
/
total;

33
/*
熵的定义公式
*/


34
cur_entropy
+=

percentage
*
logf(percentage);

35
/*
根据泰勒展式去掉高次项得到的熵的近似计算公式

36
cur_entropy += percentage*percentage;
*/


37
}

38
return
cur_entropy;

39
//
return (1-cur_entropy);


40
}

41


42
//
寻找最大熵阈值并分割


43
void
MaxEntropy(IplImage
*
src,IplImage
*
dst)

44
{

45
assert(src
!=
NULL);

46
assert(src
->
depth
==
8
&&
dst
->
depth
==
8
);

47
assert(src
->
nChannels
==
1
);

48
CvHistogram
*
hist
=
cvCreateHist(
1
,
&
HistogramBins,CV_HIST_ARRAY,HistogramRange);
//
创建一个指定尺寸的直方图

49
//
参数含义:直方图包含的维数、直方图维数尺寸的数组、直方图的表示格式、方块范围数组、归一化标志


50
cvCalcHist(
&
src,hist);
//
计算直方图


51
double
maxentropy
=

1.0
;

52
int
max_index
=

1
;

53
//
循环测试每个分割点,寻找到最大的阈值分割点


54
for
(
int
i
=
0
;i
<
HistogramBins;i
++
)

55
{

56
double
cur_entropy
=
caculateCurrentEntropy(hist,i,
object
)
+
caculateCurrentEntropy(hist,i,back);

57
if
(cur_entropy
>
maxentropy)

58
{

59
maxentropy
=
cur_entropy;

60
max_index
=
i;

61
}

62
}

63
cout
<<

The Threshold of this Image in MaxEntropy is:

<<
max_index
<<
endl;

64
cvThreshold(src, dst, (
double
)max_index,
255
, CV_THRESH_BINARY);

65
cvReleaseHist(
&
hist);

66
}

基本全局阀值法 

图像二值化如何选取阈值_halcon算法
图像二值化如何选取阈值_halcon算法
代码

1
/*
============================================================================

2
= 代码内容:基本全局阈值法

3
==============================================================================
*/


4
int
BasicGlobalThreshold(
int
*
pg,
int
start,
int
end)

5
{
//
基本全局阈值法


6
int
i,t,t1,t2,k1,k2;

7
double
u,u1,u2;

8
t
=
0
;

9
u
=
0
;

10
for
(i
=
start;i
<
end;i
++
)

11
{

12
t
+=
pg[i];

13
u
+=
i
*
pg[i];

14
}

15
k2
=
(
int
) (u
/
t);
//
计算此范围灰度的平均值


16
do


17
{

18
k1
=
k2;

19
t1
=
0
;

20
u1
=
0
;

21
for
(i
=
start;i
<=
k1;i
++
)

22
{
//
计算低灰度组的累加和


23
t1
+=
pg[i];

24
u1
+=
i
*
pg[i];

25
}

26
t2
=
t

t1;

27
u2
=
u

u1;

28
if
(t1)

29
u1
=
u1
/
t1;
//
计算低灰度组的平均值


30
else


31
u1
=
0
;

32
if
(t2)

33
u2
=
u2
/
t2;
//
计算高灰度组的平均值


34
else


35
u2
=
0
;

36
k2
=
(
int
) ((u1
+
u2)
/
2
);
//
得到新的阈值估计值


37
}

38
while
(k1
!=
k2);
//
数据未稳定,继续

39
//
cout<<“The Threshold of this Image in BasicGlobalThreshold is:”<<k1<<endl;


40
return
(k1);
//
返回阈值


41
}

五 效果(略)

 

Author:         SKySeraph

Email/GTalk: zgzhaobo@gmail.com    QQ:452728574

From:         【图像算法】七种常见阈值分割代码(Otsu、最大熵、迭代法、自适应阀值、手动、迭代法、基本全局阈值法)

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,请尊重作者的劳动成果。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/29203.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信