数据仓库–事实表

数据仓库–事实表事实表分成三种:事务事实表、周期快照事实表、累计快照事实表事务事实表官方定义是:发生在某个时间点上的一个事件。比如以订单为例:下单是一个事实、付款是一个事实、退款是一个事实,所有事实的累计就是事务事实表周期快照事实表如果需要对某一天或者某个月的数据进行分析,那么可以使用周期快照事实表,比如:

大家好,欢迎来到IT知识分享网。

事实表分成三种:事务事实表、周期快照事实表、累计快照事实表

事务事实表

官方定义是:发生在某个时间点上的一个事件。比如以订单为例:下单是一个事实、付款是一个事实、退款是一个事实,所有事实的累计就是事务事实表

周期快照事实表

如果需要对某一天或者某个月的数据进行分析,那么可以使用周期快照事实表,比如:以天举例,财务报表一般都是周期快照事实表,它的最细粒度主键就是:日期+订单

累计快照事实表

累计快照表,具有确定的开始和结束事件,并且记录关键事件或者过程的里程碑,它因此包含了很多日期的外键

三种事实表的区别 

数据仓库--事实表

 

在维度建模的数据仓库中,事实表是指其中保存了大量业务度量数据的表。事实表中的度量值一般称为事实。在事实表中最有用的事实就是数字类型的事实和可加类型的事实。事实表的粒度决定了数据仓库中数据的详细程度。

一般来说,以粒度作为化分依据,主要有三种事实表,分别是事务粒度事实表(Transaction Grain Fact Table),周期快照粒度事实表(Periodic Snapshot Grain Fact Table)和累积快照粒度事实表(Accumulating Snapshot Grain Fact Table)。

事务粒度事实表中的一条记录代表了业务系统中的一个事件。事务出现以后,就会在事实中出现一条记录。事务粒度事实表也称为原子粒度。典型 的例子是销售单分列项事实表。

周期快照粒度事实表用来记录有规律的,可预见时间间隔的业务累计数据。通常的时间间隔可以是每天、每周或者每月。典型的例子是库存日快照事实表。

累积快照事实表一般用来涵盖一个事务的生命周期内的不确定的时间跨度。典型的例子是KDT#2中描述的具有多个日期字段的发货事实表。

 

通常来说,事务和快照是建模中的两个非常重要的特点,将两者相结合可以使模型建立的更完整。

从用途的不同来说,事实表可以分为三类,分别是原子事实表,聚集事实表和合并事实表。

原子事实表(Atom Fact Table)是保存最细粒度数据的事实表,也是数据仓库中保存原子信息的场所。

聚集事实表(Aggregated Fact Table)是原子事实表上的汇总数据,也称为汇总事实表。即新建立一个事实表,它的维度表是比原维度表要少,或者某些维度表是原维度表的子集,如用月份维度表代替日期维度表;事实数据是相应事实的汇总,即求和或求平均值等。在做数据迁移时,当相关的维度数据和事实数据发生变化时,聚集事实表需要做相应的刷新。物化视图是实现聚集事实表的一种有效方式,可以设定刷新方式,具体功能由DBMS来实现。

合并事实表(Consolidated Fact Table)是指将位于不同事实表中处于相同粒度的事实进行组合建模而成的一种事实表。即新建立一个事实表,它的维度是两个或多个事实表的相同维度的集合;事实是几个事实表中感兴趣的事实。在Kimball的总线架构中,由合并事实表为主组成的合并数据集市称为二级数据集市。合并事实表的粒度可以是原子粒度也可以是聚集粒度。在做数据迁移时,当相关的原子事实表的数据有改变时,合并事实表的数据需要重新刷新。合并事实表和交叉探察是两个互补的操作。

聚集事实表和合并事实表的主要差别是合并事实表一般是从多个事实表合并而来。但是它们的差别不是绝对的,一个事实表既是聚集事实表又是合并事实表是很有可能的。因为一般合并事实表需要按相同的维度合并,所以很可能在做合并的同时需要进行聚集,即粒度变粗。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/31889.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信