大家好,欢迎来到IT知识分享网。
概要
本章对Java.util.concurrent包中的ConcurrentHashMap类进行详细的介绍。内容包括:
ConcurrentLinkedQueue介绍
ConcurrentLinkedQueue原理和数据结构
ConcurrentLinkedQueue函数列表
ConcurrentLinkedQueue源码分析(JDK1.7.0_40版本)
ConcurrentLinkedQueue示例
转载请注明出处:Java多线程系列–“JUC集合”10之 ConcurrentLinkedQueue
ConcurrentLinkedQueue介绍
ConcurrentLinkedQueue是线程安全的队列,它适用于“高并发”的场景。
它是一个基于链接节点的无界线程安全队列,按照 FIFO(先进先出)原则对元素进行排序。队列元素中不可以放置null元素(内部实现的特殊节点除外)。
ConcurrentLinkedQueue原理和数据结构
ConcurrentLinkedQueue的数据结构,如下图所示:
说明:
1. ConcurrentLinkedQueue继承于AbstractQueue。
2. ConcurrentLinkedQueue内部是通过链表来实现的。它同时包含链表的头节点head和尾节点tail。ConcurrentLinkedQueue按照 FIFO(先进先出)原则对元素进行排序。元素都是从尾部插入到链表,从头部开始返回。
3. ConcurrentLinkedQueue的链表Node中的next的类型是volatile,而且链表数据item的类型也是volatile。关于volatile,我们知道它的语义包含:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。ConcurrentLinkedQueue就是通过volatile来实现多线程对竞争资源的互斥访问的。
ConcurrentLinkedQueue函数列表
// 创建一个最初为空的 ConcurrentLinkedQueue。 ConcurrentLinkedQueue() // 创建一个最初包含给定 collection 元素的 ConcurrentLinkedQueue,按照此 collection 迭代器的遍历顺序来添加元素。 ConcurrentLinkedQueue(Collection<? extends E> c) // 将指定元素插入此队列的尾部。 boolean add(E e) // 如果此队列包含指定元素,则返回 true。 boolean contains(Object o) // 如果此队列不包含任何元素,则返回 true。 boolean isEmpty() // 返回在此队列元素上以恰当顺序进行迭代的迭代器。 Iterator<E> iterator() // 将指定元素插入此队列的尾部。 boolean offer(E e) // 获取但不移除此队列的头;如果此队列为空,则返回 null。 E peek() // 获取并移除此队列的头,如果此队列为空,则返回 null。 E poll() // 从队列中移除指定元素的单个实例(如果存在)。 boolean remove(Object o) // 返回此队列中的元素数量。 int size() // 返回以恰当顺序包含此队列所有元素的数组。 Object[] toArray() // 返回以恰当顺序包含此队列所有元素的数组;返回数组的运行时类型是指定数组的运行时类型。
<T> T[] toArray(T[] a)
ConcurrentLinkedQueue源码分析(JDK1.7.0_40版本)
ConcurrentLinkedQueue的完整源码如下:
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ /* * * * * * * Written by Doug Lea and Martin Buchholz with assistance from members of * JCP JSR-166 Expert Group and released to the public domain, as explained * at http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.AbstractQueue; import java.util.ArrayList; import java.util.Collection; import java.util.Iterator; import java.util.NoSuchElementException; import java.util.Queue; /** * An unbounded thread-safe {@linkplain Queue queue} based on linked nodes. * This queue orders elements FIFO (first-in-first-out). * The <em>head</em> of the queue is that element that has been on the * queue the longest time. * The <em>tail</em> of the queue is that element that has been on the * queue the shortest time. New elements * are inserted at the tail of the queue, and the queue retrieval * operations obtain elements at the head of the queue. * A {@code ConcurrentLinkedQueue} is an appropriate choice when * many threads will share access to a common collection. * Like most other concurrent collection implementations, this class * does not permit the use of {@code null} elements. * * <p>This implementation employs an efficient "wait-free" * algorithm based on one described in <a * href="http://www.cs.rochester.edu/u/michael/PODC96.html"> Simple, * Fast, and Practical Non-Blocking and Blocking Concurrent Queue * Algorithms</a> by Maged M. Michael and Michael L. Scott. * * <p>Iterators are <i>weakly consistent</i>, returning elements * reflecting the state of the queue at some point at or since the * creation of the iterator. They do <em>not</em> throw {@link * java.util.ConcurrentModificationException}, and may proceed concurrently * with other operations. Elements contained in the queue since the creation * of the iterator will be returned exactly once. * * <p>Beware that, unlike in most collections, the {@code size} method * is <em>NOT</em> a constant-time operation. Because of the * asynchronous nature of these queues, determining the current number * of elements requires a traversal of the elements, and so may report * inaccurate results if this collection is modified during traversal. * Additionally, the bulk operations {@code addAll}, * {@code removeAll}, {@code retainAll}, {@code containsAll}, * {@code equals}, and {@code toArray} are <em>not</em> guaranteed * to be performed atomically. For example, an iterator operating * concurrently with an {@code addAll} operation might view only some * of the added elements. * * <p>This class and its iterator implement all of the <em>optional</em> * methods of the {@link Queue} and {@link Iterator} interfaces. * * <p>Memory consistency effects: As with other concurrent * collections, actions in a thread prior to placing an object into a * {@code ConcurrentLinkedQueue} * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a> * actions subsequent to the access or removal of that element from * the {@code ConcurrentLinkedQueue} in another thread. * * <p>This class is a member of the * <a href="{@docRoot}/../technotes/guides/collections/index.html"> * Java Collections Framework</a>. * * @since 1.5 * @author Doug Lea * @param <E> the type of elements held in this collection * */ public class ConcurrentLinkedQueue<E> extends AbstractQueue<E> implements Queue<E>, java.io.Serializable { private static final long serialVersionUID = 196745693267521676L; /* * This is a modification of the Michael & Scott algorithm, * adapted for a garbage-collected environment, with support for * interior node deletion (to support remove(Object)). For * explanation, read the paper. * * Note that like most non-blocking algorithms in this package, * this implementation relies on the fact that in garbage * collected systems, there is no possibility of ABA problems due * to recycled nodes, so there is no need to use "counted * pointers" or related techniques seen in versions used in * non-GC'ed settings. * * The fundamental invariants are: * - There is exactly one (last) Node with a null next reference, * which is CASed when enqueueing. This last Node can be * reached in O(1) time from tail, but tail is merely an * optimization - it can always be reached in O(N) time from * head as well. * - The elements contained in the queue are the non-null items in * Nodes that are reachable from head. CASing the item * reference of a Node to null atomically removes it from the * queue. Reachability of all elements from head must remain * true even in the case of concurrent modifications that cause * head to advance. A dequeued Node may remain in use * indefinitely due to creation of an Iterator or simply a * poll() that has lost its time slice. * * The above might appear to imply that all Nodes are GC-reachable * from a predecessor dequeued Node. That would cause two problems: * - allow a rogue Iterator to cause unbounded memory retention * - cause cross-generational linking of old Nodes to new Nodes if * a Node was tenured while live, which generational GCs have a * hard time dealing with, causing repeated major collections. * However, only non-deleted Nodes need to be reachable from * dequeued Nodes, and reachability does not necessarily have to * be of the kind understood by the GC. We use the trick of * linking a Node that has just been dequeued to itself. Such a * self-link implicitly means to advance to head. * * Both head and tail are permitted to lag. In fact, failing to * update them every time one could is a significant optimization * (fewer CASes). As with LinkedTransferQueue (see the internal * documentation for that class), we use a slack threshold of two; * that is, we update head/tail when the current pointer appears * to be two or more steps away from the first/last node. * * Since head and tail are updated concurrently and independently, * it is possible for tail to lag behind head (why not)? * * CASing a Node's item reference to null atomically removes the * element from the queue. Iterators skip over Nodes with null * items. Prior implementations of this class had a race between * poll() and remove(Object) where the same element would appear * to be successfully removed by two concurrent operations. The * method remove(Object) also lazily unlinks deleted Nodes, but * this is merely an optimization. * * When constructing a Node (before enqueuing it) we avoid paying * for a volatile write to item by using Unsafe.putObject instead * of a normal write. This allows the cost of enqueue to be * "one-and-a-half" CASes. * * Both head and tail may or may not point to a Node with a * non-null item. If the queue is empty, all items must of course * be null. Upon creation, both head and tail refer to a dummy * Node with null item. Both head and tail are only updated using * CAS, so they never regress, although again this is merely an * optimization. */ private static class Node<E> { volatile E item; volatile Node<E> next; /** * Constructs a new node. Uses relaxed write because item can * only be seen after publication via casNext. */ Node(E item) { UNSAFE.putObject(this, itemOffset, item); } boolean casItem(E cmp, E val) { return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); } boolean casNext(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long itemOffset; private static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Node.class; itemOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("item")); nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } } /** * A node from which the first live (non-deleted) node (if any) * can be reached in O(1) time. * Invariants: * - all live nodes are reachable from head via succ() * - head != null * - (tmp = head).next != tmp || tmp != head * Non-invariants: * - head.item may or may not be null. * - it is permitted for tail to lag behind head, that is, for tail * to not be reachable from head! */ private transient volatile Node<E> head; /** * A node from which the last node on list (that is, the unique * node with node.next == null) can be reached in O(1) time. * Invariants: * - the last node is always reachable from tail via succ() * - tail != null * Non-invariants: * - tail.item may or may not be null. * - it is permitted for tail to lag behind head, that is, for tail * to not be reachable from head! * - tail.next may or may not be self-pointing to tail. */ private transient volatile Node<E> tail; /** * Creates a {@code ConcurrentLinkedQueue} that is initially empty. */ public ConcurrentLinkedQueue() { head = tail = new Node<E>(null); } /** * Creates a {@code ConcurrentLinkedQueue} * initially containing the elements of the given collection, * added in traversal order of the collection's iterator. * * @param c the collection of elements to initially contain * @throws NullPointerException if the specified collection or any * of its elements are null */ public ConcurrentLinkedQueue(Collection<? extends E> c) { Node<E> h = null, t = null; for (E e : c) { checkNotNull(e); Node<E> newNode = new Node<E>(e); if (h == null) h = t = newNode; else { t.lazySetNext(newNode); t = newNode; } } if (h == null) h = t = new Node<E>(null); head = h; tail = t; } // Have to override just to update the javadoc /** * Inserts the specified element at the tail of this queue. * As the queue is unbounded, this method will never throw * {@link IllegalStateException} or return {@code false}. * * @return {@code true} (as specified by {@link Collection#add}) * @throws NullPointerException if the specified element is null */ public boolean add(E e) { return offer(e); } /** * Try to CAS head to p. If successful, repoint old head to itself * as sentinel for succ(), below. */ final void updateHead(Node<E> h, Node<E> p) { if (h != p && casHead(h, p)) h.lazySetNext(h); } /** * Returns the successor of p, or the head node if p.next has been * linked to self, which will only be true if traversing with a * stale pointer that is now off the list. */ final Node<E> succ(Node<E> p) { Node<E> next = p.next; return (p == next) ? head : next; } /** * Inserts the specified element at the tail of this queue. * As the queue is unbounded, this method will never return {@code false}. * * @return {@code true} (as specified by {@link Queue#offer}) * @throws NullPointerException if the specified element is null */ public boolean offer(E e) { checkNotNull(e); final Node<E> newNode = new Node<E>(e); for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; if (q == null) { // p is last node if (p.casNext(null, newNode)) { // Successful CAS is the linearization point // for e to become an element of this queue, // and for newNode to become "live". if (p != t) // hop two nodes at a time casTail(t, newNode); // Failure is OK. return true; } // Lost CAS race to another thread; re-read next } else if (p == q) // We have fallen off list. If tail is unchanged, it // will also be off-list, in which case we need to // jump to head, from which all live nodes are always // reachable. Else the new tail is a better bet. p = (t != (t = tail)) ? t : head; else // Check for tail updates after two hops. p = (p != t && t != (t = tail)) ? t : q; } } public E poll() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { E item = p.item; if (item != null && p.casItem(item, null)) { // Successful CAS is the linearization point // for item to be removed from this queue. if (p != h) // hop two nodes at a time updateHead(h, ((q = p.next) != null) ? q : p); return item; } else if ((q = p.next) == null) { updateHead(h, p); return null; } else if (p == q) continue restartFromHead; else p = q; } } } public E peek() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { E item = p.item; if (item != null || (q = p.next) == null) { updateHead(h, p); return item; } else if (p == q) continue restartFromHead; else p = q; } } } /** * Returns the first live (non-deleted) node on list, or null if none. * This is yet another variant of poll/peek; here returning the * first node, not element. We could make peek() a wrapper around * first(), but that would cost an extra volatile read of item, * and the need to add a retry loop to deal with the possibility * of losing a race to a concurrent poll(). */ Node<E> first() { restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { boolean hasItem = (p.item != null); if (hasItem || (q = p.next) == null) { updateHead(h, p); return hasItem ? p : null; } else if (p == q) continue restartFromHead; else p = q; } } } /** * Returns {@code true} if this queue contains no elements. * * @return {@code true} if this queue contains no elements */ public boolean isEmpty() { return first() == null; } /** * Returns the number of elements in this queue. If this queue * contains more than {@code Integer.MAX_VALUE} elements, returns * {@code Integer.MAX_VALUE}. * * <p>Beware that, unlike in most collections, this method is * <em>NOT</em> a constant-time operation. Because of the * asynchronous nature of these queues, determining the current * number of elements requires an O(n) traversal. * Additionally, if elements are added or removed during execution * of this method, the returned result may be inaccurate. Thus, * this method is typically not very useful in concurrent * applications. * * @return the number of elements in this queue */ public int size() { int count = 0; for (Node<E> p = first(); p != null; p = succ(p)) if (p.item != null) // Collection.size() spec says to max out if (++count == Integer.MAX_VALUE) break; return count; } /** * Returns {@code true} if this queue contains the specified element. * More formally, returns {@code true} if and only if this queue contains * at least one element {@code e} such that {@code o.equals(e)}. * * @param o object to be checked for containment in this queue * @return {@code true} if this queue contains the specified element */ public boolean contains(Object o) { if (o == null) return false; for (Node<E> p = first(); p != null; p = succ(p)) { E item = p.item; if (item != null && o.equals(item)) return true; } return false; } /** * Removes a single instance of the specified element from this queue, * if it is present. More formally, removes an element {@code e} such * that {@code o.equals(e)}, if this queue contains one or more such * elements. * Returns {@code true} if this queue contained the specified element * (or equivalently, if this queue changed as a result of the call). * * @param o element to be removed from this queue, if present * @return {@code true} if this queue changed as a result of the call */ public boolean remove(Object o) { if (o == null) return false; Node<E> pred = null; for (Node<E> p = first(); p != null; p = succ(p)) { E item = p.item; if (item != null && o.equals(item) && p.casItem(item, null)) { Node<E> next = succ(p); if (pred != null && next != null) pred.casNext(p, next); return true; } pred = p; } return false; } /** * Appends all of the elements in the specified collection to the end of * this queue, in the order that they are returned by the specified * collection's iterator. Attempts to {@code addAll} of a queue to * itself result in {@code IllegalArgumentException}. * * @param c the elements to be inserted into this queue * @return {@code true} if this queue changed as a result of the call * @throws NullPointerException if the specified collection or any * of its elements are null * @throws IllegalArgumentException if the collection is this queue */ public boolean addAll(Collection<? extends E> c) { if (c == this) // As historically specified in AbstractQueue#addAll throw new IllegalArgumentException(); // Copy c into a private chain of Nodes Node<E> beginningOfTheEnd = null, last = null; for (E e : c) { checkNotNull(e); Node<E> newNode = new Node<E>(e); if (beginningOfTheEnd == null) beginningOfTheEnd = last = newNode; else { last.lazySetNext(newNode); last = newNode; } } if (beginningOfTheEnd == null) return false; // Atomically append the chain at the tail of this collection for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; if (q == null) { // p is last node if (p.casNext(null, beginningOfTheEnd)) { // Successful CAS is the linearization point // for all elements to be added to this queue. if (!casTail(t, last)) { // Try a little harder to update tail, // since we may be adding many elements. t = tail; if (last.next == null) casTail(t, last); } return true; } // Lost CAS race to another thread; re-read next } else if (p == q) // We have fallen off list. If tail is unchanged, it // will also be off-list, in which case we need to // jump to head, from which all live nodes are always // reachable. Else the new tail is a better bet. p = (t != (t = tail)) ? t : head; else // Check for tail updates after two hops. p = (p != t && t != (t = tail)) ? t : q; } } /** * Returns an array containing all of the elements in this queue, in * proper sequence. * * <p>The returned array will be "safe" in that no references to it are * maintained by this queue. (In other words, this method must allocate * a new array). The caller is thus free to modify the returned array. * * <p>This method acts as bridge between array-based and collection-based * APIs. * * @return an array containing all of the elements in this queue */ public Object[] toArray() { // Use ArrayList to deal with resizing. ArrayList<E> al = new ArrayList<E>(); for (Node<E> p = first(); p != null; p = succ(p)) { E item = p.item; if (item != null) al.add(item); } return al.toArray(); } /** * Returns an array containing all of the elements in this queue, in * proper sequence; the runtime type of the returned array is that of * the specified array. If the queue fits in the specified array, it * is returned therein. Otherwise, a new array is allocated with the * runtime type of the specified array and the size of this queue. * * <p>If this queue fits in the specified array with room to spare * (i.e., the array has more elements than this queue), the element in * the array immediately following the end of the queue is set to * {@code null}. * * <p>Like the {@link #toArray()} method, this method acts as bridge between * array-based and collection-based APIs. Further, this method allows * precise control over the runtime type of the output array, and may, * under certain circumstances, be used to save allocation costs. * * <p>Suppose {@code x} is a queue known to contain only strings. * The following code can be used to dump the queue into a newly * allocated array of {@code String}: * * <pre> * String[] y = x.toArray(new String[0]);</pre> * * Note that {@code toArray(new Object[0])} is identical in function to * {@code toArray()}. * * @param a the array into which the elements of the queue are to * be stored, if it is big enough; otherwise, a new array of the * same runtime type is allocated for this purpose * @return an array containing all of the elements in this queue * @throws ArrayStoreException if the runtime type of the specified array * is not a supertype of the runtime type of every element in * this queue * @throws NullPointerException if the specified array is null */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { // try to use sent-in array int k = 0; Node<E> p; for (p = first(); p != null && k < a.length; p = succ(p)) { E item = p.item; if (item != null) a[k++] = (T)item; } if (p == null) { if (k < a.length) a[k] = null; return a; } // If won't fit, use ArrayList version ArrayList<E> al = new ArrayList<E>(); for (Node<E> q = first(); q != null; q = succ(q)) { E item = q.item; if (item != null) al.add(item); } return al.toArray(a); } /** * Returns an iterator over the elements in this queue in proper sequence. * The elements will be returned in order from first (head) to last (tail). * * <p>The returned iterator is a "weakly consistent" iterator that * will never throw {@link java.util.ConcurrentModificationException * ConcurrentModificationException}, and guarantees to traverse * elements as they existed upon construction of the iterator, and * may (but is not guaranteed to) reflect any modifications * subsequent to construction. * * @return an iterator over the elements in this queue in proper sequence */ public Iterator<E> iterator() { return new Itr(); } private class Itr implements Iterator<E> { /** * Next node to return item for. */ private Node<E> nextNode; /** * nextItem holds on to item fields because once we claim * that an element exists in hasNext(), we must return it in * the following next() call even if it was in the process of * being removed when hasNext() was called. */ private E nextItem; /** * Node of the last returned item, to support remove. */ private Node<E> lastRet; Itr() { advance(); } /** * Moves to next valid node and returns item to return for * next(), or null if no such. */ private E advance() { lastRet = nextNode; E x = nextItem; Node<E> pred, p; if (nextNode == null) { p = first(); pred = null; } else { pred = nextNode; p = succ(nextNode); } for (;;) { if (p == null) { nextNode = null; nextItem = null; return x; } E item = p.item; if (item != null) { nextNode = p; nextItem = item; return x; } else { // skip over nulls Node<E> next = succ(p); if (pred != null && next != null) pred.casNext(p, next); p = next; } } } public boolean hasNext() { return nextNode != null; } public E next() { if (nextNode == null) throw new NoSuchElementException(); return advance(); } public void remove() { Node<E> l = lastRet; if (l == null) throw new IllegalStateException(); // rely on a future traversal to relink. l.item = null; lastRet = null; } } /** * Saves the state to a stream (that is, serializes it). * * @serialData All of the elements (each an {@code E}) in * the proper order, followed by a null * @param s the stream */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException { // Write out any hidden stuff s.defaultWriteObject(); // Write out all elements in the proper order. for (Node<E> p = first(); p != null; p = succ(p)) { Object item = p.item; if (item != null) s.writeObject(item); } // Use trailing null as sentinel s.writeObject(null); } /** * Reconstitutes the instance from a stream (that is, deserializes it). * @param s the stream */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { s.defaultReadObject(); // Read in elements until trailing null sentinel found Node<E> h = null, t = null; Object item; while ((item = s.readObject()) != null) { @SuppressWarnings("unchecked") Node<E> newNode = new Node<E>((E) item); if (h == null) h = t = newNode; else { t.lazySetNext(newNode); t = newNode; } } if (h == null) h = t = new Node<E>(null); head = h; tail = t; } /** * Throws NullPointerException if argument is null. * * @param v the element */ private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); } private boolean casTail(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val); } private boolean casHead(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long headOffset; private static final long tailOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = ConcurrentLinkedQueue.class; headOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("head")); tailOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("tail")); } catch (Exception e) { throw new Error(e); } } }
下面从ConcurrentLinkedQueue的创建,添加,删除这几个方面对它进行分析。
1 创建
下面以ConcurrentLinkedQueue()来进行说明。
public ConcurrentLinkedQueue() { head = tail = new Node<E>(null); }
说明:在构造函数中,新建了一个“内容为null的节点”,并设置表头head和表尾tail的值为新节点。
head和tail的定义如下:
private transient volatile Node<E> head; private transient volatile Node<E> tail;
head和tail都是volatile类型,他们具有volatile赋予的含义:“即对一个volatile变量的读,总是能看到(任意线程)对这个volatile变量最后的写入”。
Node的声明如下:
private static class Node<E> { volatile E item; volatile Node<E> next; Node(E item) { UNSAFE.putObject(this, itemOffset, item); } boolean casItem(E cmp, E val) { return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val); } void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); } boolean casNext(Node<E> cmp, Node<E> val) { return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val); } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long itemOffset; private static final long nextOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class k = Node.class; itemOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("item")); nextOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("next")); } catch (Exception e) { throw new Error(e); } } }
说明:
Node是个单向链表节点,next用于指向下一个Node,item用于存储数据。Node中操作节点数据的API,都是通过Unsafe机制的CAS函数实现的;例如casNext()是通过CAS函数“比较并设置节点的下一个节点”。
2. 添加
下面以add(E e)为例对ConcurrentLinkedQueue中的添加进行说明。
public boolean add(E e) { return offer(e); }
说明:add()实际上是调用的offer()来完成添加操作的。
offer()的源码如下:
public boolean offer(E e) { // 检查e是不是null,是的话抛出NullPointerException异常。 checkNotNull(e); // 创建新的节点 final Node<E> newNode = new Node<E>(e); // 将“新的节点”添加到链表的末尾。 for (Node<E> t = tail, p = t;;) { Node<E> q = p.next; // 情况1:q为空 if (q == null) { // CAS操作:如果“p的下一个节点为null”(即p为尾节点),则设置p的下一个节点为newNode。 // 如果该CAS操作成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。 // 如果该CAS操作失败,这意味着“其它线程对尾节点进行了修改”,则重新循环。 if (p.casNext(null, newNode)) { if (p != t) // hop two nodes at a time casTail(t, newNode); // Failure is OK. return true; } } // 情况2:p和q相等 else if (p == q) p = (t != (t = tail)) ? t : head; // 情况3:其它 else p = (p != t && t != (t = tail)) ? t : q; } }
说明:offer(E e)的作用就是将元素e添加到链表的末尾。offer()比较的地方是理解for循环,下面区分3种情况对for进行分析。
情况1 — q为空。这意味着q是尾节点的下一个节点。此时,通过p.casNext(null, newNode)将“p的下一个节点设为newNode”,若设置成功的话,则比较“p和t”(若p不等于t,则设置newNode为新的尾节点),然后返回true。否则的话(意味着“其它线程对尾节点进行了修改”),什么也不做,继续进行for循环。
p.casNext(null, newNode),是调用CAS对p进行操作。若“p的下一个节点等于null”,则设置“p的下一个节点等于newNode”;设置成功的话,返回true,失败的话返回false。
情况2 — p和q相等。这种情况什么时候会发生呢?通过“情况3”,我们知道,经过“情况3”的处理后,p的值可能等于q。
此时,若尾节点没有发生变化的话,那么,应该是头节点发生了变化,则设置p为头节点,然后重新遍历链表;否则(尾节点变化的话),则设置p为尾节点。
情况3 — 其它。
我们将p = (p != t && t != (t = tail)) ? t : q;转换成如下代码。
if (p==t) { p = q; } else { Node<E> tmp=t; t = tail; if (tmp==t) { p=q; } else { p=t; } }
如果p和t相等,则设置p为q。否则的话,判断“尾节点是否发生变化”,没有变化的话,则设置p为q;否则,设置p为尾节点。
checkNotNull()的源码如下:
private static void checkNotNull(Object v) { if (v == null) throw new NullPointerException(); }
3. 删除
下面以poll()为例对ConcurrentLinkedQueue中的删除进行说明。
public E poll() { // 设置“标记” restartFromHead: for (;;) { for (Node<E> h = head, p = h, q;;) { E item = p.item; // 情况1 // 表头的数据不为null,并且“设置表头的数据为null”这个操作成功的话; // 则比较“p和h”(若p!=h,即表头发生了变化,则更新表头,即设置表头为p),然后返回原表头的item值。 if (item != null && p.casItem(item, null)) { if (p != h) // hop two nodes at a time updateHead(h, ((q = p.next) != null) ? q : p); return item; } // 情况2 // 表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。则更新表头为p,并返回null。 else if ((q = p.next) == null) { updateHead(h, p); return null; } // 情况3 // 这可能到由于“情况4”的发生导致p=q,在该情况下跳转到restartFromHead标记重新操作。 else if (p == q) continue restartFromHead; // 情况4 // 设置p为q else p = q; } } }
说明:poll()的作用就是删除链表的表头节点,并返回被删节点对应的值。poll()的实现原理和offer()比较类似,下面根将or循环划分为4种情况进行分析。
情况1:“表头节点的数据”不为null,并且“设置表头节点的数据为null”这个操作成功。
p.casItem(item, null) — 调用CAS函数,比较“节点p的数据值”与item是否相等,是的话,设置节点p的数据值为null。
在情况1发生时,先比较“p和h”,若p!=h,即表头发生了变化,则调用updateHead()更新表头;然后返回删除节点的item值。
updateHead()的源码如下:
final void updateHead(Node<E> h, Node<E> p) { if (h != p && casHead(h, p)) h.lazySetNext(h); }
说明:updateHead()的最终目的是更新表头为p,并设置h的下一个节点为h本身。
casHead(h,p)是通过CAS函数设置表头,若表头等于h的话,则设置表头为p。
lazySetNext()的源码如下:
void lazySetNext(Node<E> val) { UNSAFE.putOrderedObject(this, nextOffset, val); }
putOrderedObject()函数,我们在前面一章“TODO”中介绍过。h.lazySetNext(h)的作用是通过CAS函数设置h的下一个节点为h自身,该设置可能会延迟执行。
情况2:如果表头的下一个节点为null,即链表只有一个“内容为null的表头节点”。
则调用updateHead(h, p),将表头更新p;然后返回null。
情况3:p=q
在“情况4”的发生后,会导致p=q;此时,“情况3”就会发生。当“情况3”发生后,它会跳转到restartFromHead标记重新操作。
情况4:其它情况。
设置p=q。
ConcurrentLinkedQueue示例
1 import java.util.*; 2 import java.util.concurrent.*; 3 4 /* 5 * ConcurrentLinkedQueue是“线程安全”的队列,而LinkedList是非线程安全的。 6 * 7 * 下面是“多个线程同时操作并且遍历queue”的示例 8 * (01) 当queue是ConcurrentLinkedQueue对象时,程序能正常运行。 9 * (02) 当queue是LinkedList对象时,程序会产生ConcurrentModificationException异常。 10 * 11 * @author skywang 12 */ 13 public class ConcurrentLinkedQueueDemo1 { 14 15 // TODO: queue是LinkedList对象时,程序会出错。 16 //private static Queue<String> queue = new LinkedList<String>(); 17 private static Queue<String> queue = new ConcurrentLinkedQueue<String>(); 18 public static void main(String[] args) { 19 20 // 同时启动两个线程对queue进行操作! 21 new MyThread("ta").start(); 22 new MyThread("tb").start(); 23 } 24 25 private static void printAll() { 26 String value; 27 Iterator iter = queue.iterator(); 28 while(iter.hasNext()) { 29 value = (String)iter.next(); 30 System.out.print(value+", "); 31 } 32 System.out.println(); 33 } 34 35 private static class MyThread extends Thread { 36 MyThread(String name) { 37 super(name); 38 } 39 @Override 40 public void run() { 41 int i = 0; 42 while (i++ < 6) { 43 // “线程名” + "-" + "序号" 44 String val = Thread.currentThread().getName()+i; 45 queue.add(val); 46 // 通过“Iterator”遍历queue。 47 printAll(); 48 } 49 } 50 } 51 }
(某一次)运行结果:
ta1, ta1, tb1, tb1, ta1, ta1, tb1, tb1, ta2, ta2, tb2, tb2, ta1, ta1, tb1, tb1, ta2, ta2, tb2, tb2, ta3, tb3, ta3, ta1, tb3, tb1, ta4, ta2, ta1, tb2, tb1, ta3, ta2, tb3, tb2, ta4, ta3, tb4, tb3, ta1, ta4, tb1, tb4, ta2, ta5, tb2, ta1, ta3, tb1, tb3, ta2, ta4, tb2, tb4, ta3, ta5, tb3, tb5, ta4, ta1, tb4, tb1, ta5, ta2, tb5, tb2, ta6, ta3, ta1, tb3, tb1, ta4, ta2, tb4, tb2, ta5, ta3, tb5, tb3, ta6, ta4, tb6, tb4, ta5, tb5, ta6, tb6,
结果说明:如果将源码中的queue改成LinkedList对象时,程序会产生ConcurrentModificationException异常。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/33168.html