TDOA 基础之 双曲线

TDOA 基础之 双曲线TDOA的算法基础就是时间差,根据时间差换算出距离差,后面的数学理论知识就是双曲线交点问题。双曲线方程是2次方程,解算曲线交点也就是两个2次方程求解。首先看双曲线定义(百度百科):双曲线(Hyperbola)是指与平面上到两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线

大家好,欢迎来到IT知识分享网。

TDOA 的算法基础就是时间差,根据时间差换算出距离差,后面的数学理论知识就是双曲线交点问题。

双曲线方程是2次方程,解算曲线交点也就是两个2次方程求解。

 

首先看双曲线定义(百度百科):

双曲线(Hyperbola)是指与平面上到两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹 [1]  。双曲线是圆锥曲线的一种,即圆锥面与平行于中轴的平面的交截线。

TDOA 基础之 双曲线

 

 

而我们实际放置基站的时候,不是原点对称的,但是我们可以根据对称点对x y进行移位产生新的双曲线方程

TDOA 基础之 双曲线

其中(h,k)就是放置基站中心对称点,双曲线焦点是基站坐标点。 

对于放置好的两个基站可以知道h k 以及c,通过发送电磁信号可以求得距离差a,对于一个给定点的双曲线方程就可以简化成一个2元2次方程 Ax2+By2=1

同理在增加一个基站,又会多出两个双曲线方程,利用其中一个方程,可以得到 Cx2+Dy2=1

联立两个方程即可求出x y

此时此时x y 可能有4个坐标,我们可以假定我们的标签只能在第一象限活动,限制条件为x>0 and y>0最终获得标签坐标

 

更多内容参考蓝点无限论坛bphero.com.cn 

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/34477.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信