带你快速搭建Hadoop运行环境

使用./bin/hdfs dfs -cat output/* 命令查看运行后在 HDFS 上的输出文件列表,或者使用下面的命令拷贝到本地查看。

Hadoop 是一个分布式系统基础架构,在大数据领域被广泛的使用,它将大数据处理引擎尽可能的靠近存储,Hadoop 最核心的设计就是 HDFS 和 MapReduce,HDFS 为海量的数据提供了存储,MapReduce 为海量的数据提供了计算。这篇文章主要就是介绍一下如何搭建一个 Hadoop 运行环境。

带你快速搭建Hadoop运行环境

我们使用 Linux 操作系统来搭建环境,下面的信息是用来准备搭建 Hadoop 环境的电脑环境信息。

hadoop@ubuntu:~$ cat /etc/os-release
NAME="Ubuntu"
VERSION="14.04.5 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.5 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"

紧接着来新建一个用户,这一步其实也可以省略的,可以根据实际情况来决定,这里是新建了一个叫 hadoop 的新用户。

#创建新用户
sudo useradd -m hadoop -s /bin/bash
#设置密码
sudo passwd hadoop
#为hadoop用户增加管理员权限
sudo adduser hadoop sudo
#切换到hadoop用户
su hadoop

我们首先来设置一下 SSH 无密码登录,这一步建议都设置一下,因为分布式系统环境都是由多台服务器构成的,设置免密码登录会方便使用。

#先检查下是否可以在没有密码的情况下ssh到localhost
ssh localhost
#如果在没有密码的情况下无法ssh到localhost,请执行以下命令
ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
chmod 0600 ~/.ssh/authorized_keys

上面是一些准备工作,接下来就正式开始部署 Hadoop 环境了。我们先在 Apache 官网(http://hadoop.apache.org)这里下载最新的稳定版本的 Hadoop 发行版,然后解压到指定目录并进入这个目录,执行 ./bin/hadoop 和 ./bin/hadoop version 可以分别显示 hadoop 脚本的使用文档和版本信息,然后修改一下 ./etc/hadoop/core-site.xml 和 ./etc/hadoop/hdfs-site.xml这两个配置文件,配置修改分别如下所示。

  1. 修改 ./etc/hadoop/core-site.xml 配置文件,添加如下配置:
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9090</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>file:/opt/bigdata/hadoop/tmp</value>
        <description>A base for other temporary directories.</description>
    </property>
</configuration>
  1. 修改 ./etc/hadoop/hdfs-site.xml 配置文件,添加如下配置:
<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:/opt/bigdata/hadoop/tmp/dfs/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:/opt/bigdata/hadoop/tmp/dfs/data</value>
    </property>
</configuration>

配置修改好之后,执行格式化文件系统,操作如下。

hadoop@ubuntu:/opt/bigdata/hadoop$ ./bin/hdfs namenode -format
#执行后输出会比较多,看到下边这条信息表示成功
 INFO common.Storage: Storage directory /opt/bigdata/hadoop/tmp/dfs/name has been successfully formatted.

在格式化 NameNode 的时候可能会遇到下面这样的两个问题。

  1. 提示 Error: JAVA_HOME is not set and could not be found. 的错误,这说明 JAVA_HOME 环境变量没有配置好,重新配置一下,或者修改 ./etc/hadoop/hadoop-env.sh 文件把 export JAVA_HOME=${JAVA_HOME} 直接修改成绝对目录 export JAVA_HOME=/usr/lib/jvm/java-8 既可解决。
  2. 提示 ERROR namenode.NameNode: java.io.IOException: Cannot create directory /opt/bigdata/hadoop/tmp/dfs/name/current 的错误,这是因为配置的 /opt/bigdata/hadoop/tmp 目录的写入权限有问题,可以直接执行 sudo chmod -R a+w /home/hadoop/tmp 即可解决。

接下来执行 ./sbin/start-dfs.sh 来开启 NameNode 和 DataNode 守护进程,然后检查 NameNode、DataNode 和 SecondaryNameNode 是否都已经启动成功,操作如下:

hadoop@ubuntu:/opt/bigdata/hadoop$ jps
4950 Jps
3622 SecondaryNameNode
3295 DataNode
2910 NameNode

启动成功之后可以用浏览器来打开 http://localhost:50070/ 浏览 NameNode 的Web界面。

带你快速搭建Hadoop运行环境

到此为止,Hadoop 单节点集群(伪分布式)环境搭建就已经成功了, 接下来运行一个 Hadoop 伪分布式实例。因为 Hadoop 单机模式是运行的本地文件系统,(伪)分布式模式则是运行的 HDFS 上的数据。我们现在 HDFS 中创建用户目录,执行目命令 ./bin/hdfs dfs -mkdir -p /user/hadoop 即可,执行如下命令将输入文件复制到分布式文件系统中。

#这个可以不执行,因为会自动创建好目录的 
#./bin/hdfs dfs -mkdir input
./bin/hdfs dfs -put etc/hadoop input
#查看复制到HDFS的文件列表
./bin/hdfs dfs -ls input

接下来运行一个 Hadoop 自带的 mapreduce 实例看看效果吧,直接执行如下命令。

./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.9.1.jar grep input output 'dfs[a-z.]+'

使用 ./bin/hdfs dfs -cat output/* 命令查看运行后在 HDFS 上的输出文件列表,或者使用下面的命令拷贝到本地查看。

./bin/hdfs dfs -get output output
./cat output/*

关闭 Hadoop 直接使用 ./sbin/stop-dfs.sh 命令即可。

带你快速搭建Hadoop运行环境

这里介绍了 Hadoop 环境搭建的最基本最简单的方法,我建议最好是边看边动手操作一下,这样可以加深印象和理解,更加有利于掌握相关知识点。当然,Hadoop 环境搭建还有其他一些方法,也是实际开发中常用的方法,比如基于 Yarn、Mesos 等资源调度系统搭建、使用 Docker 搭建等等,有兴趣的朋友们可以尝试一下这些方法,也欢迎留言交流。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/5462.html

(0)
上一篇 2022-12-13 23:16
下一篇 2022-12-13 23:16

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信