什么是业务中台、数据中台、技术中台?这回终于解释清楚了

什么是业务中台、数据中台、技术中台?这回终于解释清楚了最近,到处都在说中台,被各种中台概念狂轰乱炸,有数据中台、业务中台、技术中台、AI中台、组织中台……今天就带领大夹一起了解下,我们都知道公司有业

大家好,欢迎来到IT知识分享网。

最近,到处都在说中台,被各种中台概念狂轰乱炸,有数据中台、业务中台、技术中台、AI中台、组织中台……今天就带领大夹一起了解下,我们都知道公司有业务中台的话,数据中台的工作会好做很多,数据中台的搭建会事半功倍

前言

2015年阿里巴巴提出“大中台,小前台”的中台战略,通过实施中台战略找到能够快速应对外界变化,整合阿里各种基础能力,高效支撑业务创新的机制。阿里巴巴中台战略最早从业务中台和数据中台建设开始,采用了双中台的建设模式,到后来发展出了移动中台、技术中台和研发中台等,这些中台的能力综合在一起就构成了阿里巴巴企业级数字化能力。传统企业在技术能力、组织架构和商业模式等方面与阿里巴巴存在非常大的差异,在实施中台战略时是否可以照搬阿里巴巴中台建设模式?传统企业中台数字化转型需要提升哪些方面的基本能力呢?下面我们一起来分析分析。

中台能力总体框架

中台建设过程从根本上讲是企业自身综合能力持续优化和提升的过程,最终目标是实现企业级业务能力复用和不同业务板块能力的联通和融合。

企业级的综合能力,一般包含以下四种:业务能力、数据能力、技术能力和组织能力,如下图所示。

什么是业务中台、数据中台、技术中台?这回终于解释清楚了

企业业务能力——EBC,即企业业务能力(Enterprise Business Capacity)。数字经济时代,企业管理已从ERP(企业资源计划)时代进入EBC(企业业务能力)时代。

企业中台数字化转型基本能力框架

业务能力主要体现为对中台领域模型的构建能力,对领域模型业务能力主要体现为对中台领域模型的构建能力,对领域模型的持续演进能力,企业级业务能力的复用、融合和产品化运营能力,以及快速响应市场的商业模式创新能力。

数据能力主要体现为企业级的数据融合能力、数据服务能力以及对商业模式创新和企业数字化运营的支撑能力。

技术能力主要体现为对设备、网络等基础资源的自动化运维和管理能力,对微服务等分布式技术架构体系化的设计、开发和架构演进能力。

组织能力主要体现为一体化的研发运营能力和敏捷的中台产品化运营能力,还体现为快速建设自适应的组织架构和中台建设方法体系等方面的能力。

这些能力相辅相成,融合在一起为企业中台数字化转型发挥最大效能。接下来,我们一起来看看在不同的领域应该如何实现这些能力。

01 业务中台

企业所有能力建设都是服务于前台一线业务的。从这个角度来讲,所有中台应该都可以称为业务中台。但我们所说的业务中台一般是指支持企业线上核心业务的中台。

业务中台承载了企业核心关键业务,是企业的核心业务能力,也是企业数字化转型的重点。业务中台的建设目标是:“将可复用的业务能力沉淀到业务中台,实现企业级业务能力复用和各业务板块之间的联通和协同,确保关键业务链路的稳定高效,提升业务创新效能。”

业务中台的主要目标是实现企业级业务能力的复用,所以业务中台建设需优先解决业务能力重复建设和复用的问题。通过重构业务模型,将分散在不同渠道和业务场景(例如:互联网应用和传统核心应用)重复建设的业务能力,沉淀到企业级中台业务模型,面向企业所有业务场景和领域,实现能力复用和流程融合。

是一个业务中台示例。在业务中台设计时,我们可以将用户管理、订单管理、商品管理和支付等这些通用的能力,通过业务领域边界划分和领域建模,沉淀到用户中心、订单中心、商品中心和支付中心等业务中台,然后基于分布式微服务技术体系完成微服务建设,形成企业级解决方案,面向前台应用提供可复用的业务能力。

什么是业务中台、数据中台、技术中台?这回终于解释清楚了

业务中台示例

在技术实现上,中台的系统落地可以采用微服务架构。微服务是目前公认的业务中台技术最佳实现,可以有效提升业务扩展能力,实现业务能力复用。

在业务建模上,中台领域建模可以采用领域驱动设计(DDD)方法,通过划分业务限界上下文边界,构建中台领域模型,根据领域模型完成微服务拆分和设计。

业务中台可以面向前台应用提供基于API接口级的业务服务能力,也可以将领域模型所在的微服务和微前端组合为业务单元,以组件的形式面向前台应用,提供基于微前端的页面级服务能力。

业务中台建设完成后,前台应用就可以联通和组装各个不同中台业务板块,既提供企业级一体化业务能力支撑,又可以提供灵活的场景化销售能力支撑。

02 数据中台

数据中台与业务中台相辅相成,共同支持前台一线业务。数据中台除了拥有传统数据平台的统计分析和决策支持功能外,会更多聚焦于为前台一线交易类业务提供智能化的数据服务,支持企业流程智能化、运营智能化和商业模式创新,实现“业务数据化和数据业务化”。

最近几年,数据应用领域出现了很多新的趋势。数据中台建设模式也随着这些趋势在发生变化,主要体现在以下几点。

第一,数据应用技术发展迅猛。近几年涌现出了大量新的数据应用技术,如NoSQL、NewSQL和分布式数据库等,以及与数据采集、数据存储、数据建模和数据挖掘等大数据相关的技术。这些技术解决业务问题的能力越来越强,但同时也增加了技术实现的复杂度。

第二,数据架构更加灵活。在从单体向微服务架构转型后,企业业务和数据形态也发生了很大的变化,数据架构已经从集中式架构向分布式架构转变。

第三,数据来源更加多元化,数据格式更加多样化。随着车联网、物联网、LBS和社交媒体等数据的引入,数据来源已从单一的业务数据向复杂的多源数据转变,数据格式也已经从以结构化为主向结构化与非结构化多种模式混合的方向转变。

第四,数据智能化应用将会越来越广泛。在数字新基建的大背景下,未来企业将汇集多种模式下的数据,借助深度学习和人工智能等智能技术,优化业务流程,实现业务流程的智能化,通过用户行为分析提升用户体验,实现精准营销、反欺诈和风险管控,实现数字化和智能化的产品运营以及AIOps等,提升企业数字智能化水平。

面对复杂的数据领域,如何建设数据中台管理并利用好这些数据?

这对企业来说是一个非常重要的课题。

数据中台的大部分数据来源于业务中台,经过数据建模和数据分析等操作后,将加工后的数据,返回业务中台为前台应用提供数据服务,或直接以数据类应用的方式面向前台应用提供API数据服务。数据中台一般包括数据采集、数据集成、数据治理、数据应用和数据资产管理,另外还有诸如数据标准和指标建设,以及数据仓库或大数据等技术应用。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/64778.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信