大家好,欢迎来到IT知识分享网。
4. 业务数据采集平台搭建
业务数据采集模块
Hive安装部署
https://blog.csdn.net/qq_44226094/article/details/123218860
业务数据同步概述
数据同步策略概述
每日定时从业务数据库中抽取数据,传输到数据仓库中,之后再对数据进行分析统计
为保证统计结果的正确性,需要保证数据仓库中的数据与业务数据库是同步,离线数仓的计算周期通常为天,所以数据同步周期为天 ( 每天同步一次 )
数据的同步策略 :
- 全量同步
- 增量同步
全量同步 : 每天都将业务数据库中的全部数据同步一份到数据仓库,保证两侧数据同步的最简单的方式
增量同步 : 每天只将业务数据中的新增及变化数据同步到数据仓库。采用每日增量同步的表 ( 首日一次全量同步 )
数据同步策略选择
两种策略对比 :
同步策略 | 优点 | 缺点 |
---|---|---|
全量同步 | 逻辑简单 | 在某些情况下效率较低。例如某张表数据量较大,但是每天数据的变化比例很低,若对其采用每日全量同步,则会重复同步和存储大量相同的数据 |
增量同步 | 效率高,无需同步和存储重复数据 | 逻辑复杂,需要将每日的新增及变化数据同原来的数据进行整合,才能使用 |
结论:业务表数据量大,且每天数据变化低 ( 增量同步 ) ,否则 全量同步
各表同步策略:
全量 :
- activity_info 活动表
- activity_rule 优惠规则表
- base_category1 商品一级分类
- base_category2 商品二级分类
- base_category3 商品三级分类
- base_dic 编码字典表
- base_province 省份表
- base_region 地区表
- base_trademark 品牌表
- cart_info 加购表(特殊)
- coupon_info 优惠卷表
- sku_attr_value SKU平台属性表
- sku_sale_attr_value SKU销售属性表
- sku_info SKU商品表
- spu_info SPU商品表
增量 :
- cart_info 加购表 ( 特殊 )
- comment_info 商品评论表
- coupon_use 优惠卷领用表
- favor_info 收藏表
- order_detail_activity 订单明细活动关联表
- order_detail_coupon 订单明细优惠卷关联表
- order_detail 订单详情表
- order_info 订单表
- order_refund_info 退单表
- order_status_log 订单状态表
- payment_info 支付表
- refund_payment 退款表
- user_info 用户表
数据同步工具概述
数据同步工具 :
- 离线、批量同步 : 基于 Select 查询 , DataX、Sqoop
- 实时流式同步 : 基于 binlog , Maxwell、Canal
增量同步方案 | DataX / Sqoop | Maxwell / Canal |
---|---|---|
对数据库的要求 | 数据表中存在create_time、update_time等字段,然后根据这些字段获取变更数据 | 要求数据库记录变更操作,如 : MySQL开启 binlog |
数据的中间状态 | 获取最后一个状态,中间状态无法获取 | 获取变更数据的所有中间状态 |
全量同步 : DataX
增量同步 : Maxwell
DataX 数据同步工具
https://blog.csdn.net/qq_44226094/article/details/123261959
Maxwell 数据同步工具
https://blog.csdn.net/qq_44226094/article/details/123319206
全量表数据同步
数据通道
全量表数据由 DataX 从 MySQL 业务数据库直接同步到 HDFS
目标路径中表名须包含后缀 full , 表示该表为全量同步
目标路径中包含一层日期 , 用以对不同天的数据进行区分
DataX 配置文件
每张全量表编写一个 DataX 的 json
配置文件
栗子 : activity_info
活动信息表
字段名 | 字段说明 | 类型 |
---|---|---|
id | 活动id | bigint(20) |
activity_name | 活动名称 | varchar(200) |
activity_type | 活动类型(1:满减,2:折扣) | varchar(10) |
activity_desc | 活动描述 | varchar(2000) |
start_time | 开始时间 | datetime(0) |
end_time | 结束时间 | datetime(0) |
create_time | 创建时间 | datetime(0) |
vim activity_info.json
{
"job": {
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"column": [
"id",
"activity_name",
"activity_type",
"activity_desc",
"start_time",
"end_time",
"create_time"
],
"connection": [
{
"jdbcUrl": [
"jdbc:mysql://cpucode102:3306/gmall"
],
"table": [
"activity_info"
]
}
],
"password": "xxxxxx",
"splitPk": "",
"username": "root"
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"column": [
{
"name": "id",
"type": "bigint"
},
{
"name": "activity_name",
"type": "string"
},
{
"name": "activity_type",
"type": "string"
},
{
"name": "activity_desc",
"type": "string"
},
{
"name": "start_time",
"type": "string"
},
{
"name": "end_time",
"type": "string"
},
{
"name": "create_time",
"type": "string"
}
],
"compress": "gzip",
"defaultFS": "hdfs://cpucode101:8020",
"fieldDelimiter": "\t",
"fileName": "activity_info",
"fileType": "text",
"path": "${targetdir}",
"writeMode": "append"
}
}
}
],
"setting": {
"speed": {
"channel": 1
}
}
}
}
由于目标路径包含一层日期,用于对不同天的数据加以区分,故 path 参数并未写死,需在提交任务时通过参数动态传入,参数名称为 targetdir
创建 HDFS 文件
hadoop fs -mkdir -p /origin_data/gmall/db/activity_info_full/2020-06-14
数据同步
python bin/datax.py job/activity_info.json -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14"
DataX 配置文件生成脚本
DataX 配置文件批量生成脚本
Datax 往 hdfs 写数据配置 HA 高可用 : https://cpucode.blog.csdn.net/article/details/123824203
gen_import_config.py
脚本
vim gen_import_config.py
# coding=utf-8
import json
import getopt
import os
import sys
import MySQLdb
#MySQL相关配置,需根据实际情况作出修改
mysql_host = "cpucode102"
mysql_port = "3306"
mysql_user = "root"
mysql_passwd = "xxxxx"
#HDFS NameNode相关配置,需根据实际情况作出修改
hdfs_nn_host = "cpucode101"
hdfs_nn_port = "8020"
#生成配置文件的目标路径,可根据实际情况作出修改
output_path = "/opt/module/datax/job/import"
#获取mysql连接
def get_connection():
return MySQLdb.connect(host=mysql_host, port=int(mysql_port), user=mysql_user, passwd=mysql_passwd)
#获取表格的元数据 包含列名和数据类型
def get_mysql_meta(database, table):
connection = get_connection()
cursor = connection.cursor()
sql = "SELECT COLUMN_NAME,DATA_TYPE from information_schema.COLUMNS WHERE TABLE_SCHEMA=%s AND TABLE_NAME=%s ORDER BY ORDINAL_POSITION"
cursor.execute(sql, [database, table])
fetchall = cursor.fetchall()
cursor.close()
connection.close()
return fetchall
#获取mysql表的列名
def get_mysql_columns(database, table):
return map(lambda x: x[0], get_mysql_meta(database, table))
#将获取的元数据中 mysql 的数据类型转换为 hive 的数据类型 写入到 hdfswriter 中
def get_hive_columns(database, table):
def type_mapping(mysql_type):
mappings = {
"bigint": "bigint",
"int": "bigint",
"smallint": "bigint",
"tinyint": "bigint",
"decimal": "string",
"double": "double",
"float": "float",
"binary": "string",
"char": "string",
"varchar": "string",
"datetime": "string",
"time": "string",
"timestamp": "string",
"date": "string",
"text": "string"
}
return mappings[mysql_type]
meta = get_mysql_meta(database, table)
return map(lambda x: {
"name": x[0], "type": type_mapping(x[1].lower())}, meta)
#生成json文件
def generate_json(source_database, source_table):
job = {
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": mysql_user,
"password": mysql_passwd,
"column": get_mysql_columns(source_database, source_table),
"splitPk": "",
"connection": [{
"table": [source_table],
"jdbcUrl": ["jdbc:mysql://" + mysql_host + ":" + mysql_port + "/" + source_database]
}]
}
},
"writer": {
"name": "hdfswriter",
"parameter": {
"defaultFS": "hdfs://" + hdfs_nn_host + ":" + hdfs_nn_port,
"fileType": "text",
"path": "${targetdir}",
"fileName": source_table,
"column": get_hive_columns(source_database, source_table),
"writeMode": "append",
"fieldDelimiter": "\t",
"compress": "gzip"
}
}
}]
}
}
if not os.path.exists(output_path):
os.makedirs(output_path)
with open(os.path.join(output_path, ".".join([source_database, source_table, "json"])), "w") as f:
json.dump(job, f)
def main(args):
source_database = ""
source_table = ""
options, arguments = getopt.getopt(args, '-d:-t:', ['sourcedb=', 'sourcetbl='])
for opt_name, opt_value in options:
if opt_name in ('-d', '--sourcedb'):
source_database = opt_value
if opt_name in ('-t', '--sourcetbl'):
source_table = opt_value
generate_json(source_database, source_table)
if __name__ == '__main__':
main(sys.argv[1:])
安装 Python Mysql 驱动
http://mirrors.163.com/centos/7/os/x86_64/Packages/
把文件上传到 /opt/software
sudo rpm -ivh MySQL-python-1.2.5-1.el7.x86_64.rpm
权限 :
chmod 777 gen_import_config.py
脚本使用说明
python gen_import_config.py -d database -t table
- -d : 数据库名
- -t : 表名
生成文件
python gen_import_config.py -d gmall -t activity_info
文件在 /opt/module/datax/job/import
下
数据进行同步
python bin/datax.py job/import/gmall.activity_info.json -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-14"
生成全部配置文件脚本
创建 gen_import_config.sh
脚本
vim gen_import_config.sh
#!/bin/bash
python ~/bin/gen_import_config.py -d gmall -t activity_info
python ~/bin/gen_import_config.py -d gmall -t activity_rule
python ~/bin/gen_import_config.py -d gmall -t base_category1
python ~/bin/gen_import_config.py -d gmall -t base_category2
python ~/bin/gen_import_config.py -d gmall -t base_category3
python ~/bin/gen_import_config.py -d gmall -t base_dic
python ~/bin/gen_import_config.py -d gmall -t base_province
python ~/bin/gen_import_config.py -d gmall -t base_region
python ~/bin/gen_import_config.py -d gmall -t base_trademark
python ~/bin/gen_import_config.py -d gmall -t cart_info
python ~/bin/gen_import_config.py -d gmall -t coupon_info
python ~/bin/gen_import_config.py -d gmall -t sku_attr_value
python ~/bin/gen_import_config.py -d gmall -t sku_info
python ~/bin/gen_import_config.py -d gmall -t sku_sale_attr_value
python ~/bin/gen_import_config.py -d gmall -t spu_info
gen_import_config.sh
脚本增加执行权限
chmod 777 gen_import_config.sh
执行 gen_import_config.sh
脚本,生成配置文件
gen_import_config.sh
配置文件 :
ll /opt/module/datax/job/import/
测试生成的 DataX 配置文件
例子 : activity_info
目的 : 测试用脚本生成的配置文件是否可用
创建目标路径
DataX 同步任务要求目标路径提前存在,故需手动创建路径,当前 activity_info
表的目标路径应为 /origin_data/gmall/db/activity_info_full/2020-06-14
hadoop fs -mkdir -p /origin_data/gmall/db/activity_info_full/2020-06-15
执行DataX同步命令
python /opt/module/datax/bin/datax.py -p"-Dtargetdir=/origin_data/gmall/db/activity_info_full/2020-06-15" /opt/module/datax/job/import/gmall.activity_info.json
观察同步结果
观察 HFDS 目标路径是否出现数据
http://cpucode101:9870/explorer.html#/origin_data/gmall/db/activity_info_full/2020-06-15
全量表数据同步脚本
全量表数据同步脚本 mysql_to_hdfs_full.sh
vim mysql_to_hdfs_full.sh
#!/bin/bash
DATAX_HOME=/opt/module/datax
# 如果传入日期则do_date等于传入的日期,否则等于前一天日期
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
#处理目标路径,此处的处理逻辑是,
#如果目标路径不存在,则创建;
#若存在,则清空,目的是保证同步任务可重复执行
handle_targetdir() {
hadoop fs -test -e $1
if [[ $? -eq 1 ]]; then
echo "路径$1不存在,正在创建......"
hadoop fs -mkdir -p $1
else
echo "路径$1已经存在"
fs_count=$(hadoop fs -count $1)
content_size=$(echo $fs_count | awk '{print $3}')
if [[ $content_size -eq 0 ]]; then
echo "路径$1为空"
else
echo "路径$1不为空,正在清空......"
hadoop fs -rm -r -f $1/*
fi
fi
}
#数据同步
import_data() {
datax_config=$1
target_dir=$2
handle_targetdir $target_dir
python $DATAX_HOME/bin/datax.py -p"-Dtargetdir=$target_dir" $datax_config
}
case $1 in
"activity_info")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
;;
"activity_rule")
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
;;
"base_category1")
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
;;
"base_category2")
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
;;
"base_category3")
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
;;
"base_dic")
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
;;
"base_province")
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
;;
"base_region")
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
;;
"base_trademark")
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
;;
"cart_info")
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
;;
"coupon_info")
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
;;
"sku_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
;;
"sku_info")
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
;;
"sku_sale_attr_value")
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
;;
"spu_info")
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
"all")
import_data /opt/module/datax/job/import/gmall.activity_info.json /origin_data/gmall/db/activity_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.activity_rule.json /origin_data/gmall/db/activity_rule_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category1.json /origin_data/gmall/db/base_category1_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category2.json /origin_data/gmall/db/base_category2_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_category3.json /origin_data/gmall/db/base_category3_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_dic.json /origin_data/gmall/db/base_dic_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_province.json /origin_data/gmall/db/base_province_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_region.json /origin_data/gmall/db/base_region_full/$do_date
import_data /opt/module/datax/job/import/gmall.base_trademark.json /origin_data/gmall/db/base_trademark_full/$do_date
import_data /opt/module/datax/job/import/gmall.cart_info.json /origin_data/gmall/db/cart_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.coupon_info.json /origin_data/gmall/db/coupon_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_attr_value.json /origin_data/gmall/db/sku_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_info.json /origin_data/gmall/db/sku_info_full/$do_date
import_data /opt/module/datax/job/import/gmall.sku_sale_attr_value.json /origin_data/gmall/db/sku_sale_attr_value_full/$do_date
import_data /opt/module/datax/job/import/gmall.spu_info.json /origin_data/gmall/db/spu_info_full/$do_date
;;
esac
mysql_to_hdfs_full.sh
增加执行权限
chmod 777 mysql_to_hdfs_full.sh
测试同步脚本
mysql_to_hdfs_full.sh all 2020-06-14
检查同步结果
查看 HDFS 目表路径是否出现全量表数据,全量表共 15 张
全量表同步总结
全量表同步逻辑简单,只需每日执行全量表数据同步脚本 mysql_to_hdfs_full.sh
增量表数据同步
数据通道
目标路径中表名须包含后缀 inc,为增量同步
目标路径中包含一层日期,用以对不同天的数据进行区分
Maxwell 配置
有 cart_info
、comment_info
等共计13张表需进行增量同步,Maxwell 同步 binlog
中的所有表的数据变更记录
为方便下游使用数据, Maxwell
将不同表的数据发往不同的 Kafka Topic
修改 Maxwell 配置文件 config.properties
vim /opt/module/maxwell-1.29.2-study/config.properties
log_level=info
producer=kafka
kafka.bootstrap.servers=cpucode101:9092,cpucode102:9092
#kafka topic动态配置
kafka_topic=%{
table}
# mysql login info
host=cpucode102
user=maxwell
password=maxwell
jdbc_options=useSSL=false&serverTimezone=Asia/Shanghai
#表过滤,只同步特定的13张表
filter= include:gmall.cart_info,include:gmall.comment_info,include:gmall.coupon_use,include:gmall.favor_info,include:gmall.order_detail,include:gmall.order_detail_activity,include:gmall.order_detail_coupon,include:gmall.order_info,include:gmall.order_refund_info,include:gmall.order_status_log,include:gmall.payment_info,include:gmall.refund_payment,include:gmall.user_info
重新启动 Maxwell
mxw.sh restart
通道测试
启动 Zookeeper 和 Kafka 集群
Zookeeper 分布式安装
https://blog.csdn.net/qq_44226094/article/details/123119682
Kafka 分布式安装部署 :
https://blog.csdn.net/qq_44226094/article/details/123121544
启动一个 Kafka Console Consumer,消费任一 topic 数据
kafka-console-consumer.sh --bootstrap-server cpucode101:9092 --topic cart_info
生成模拟数据
cd /opt/module/db_log/
java -jar gmall2020-mock-db-2021-11-14.jar
观察Kafka消费者是否能消费到数据
Flume 配置
Flume 需要将 Kafka 中各 topic 的数据传输到 HDFS,故其需选用 :
- KafkaSource
- HDFSSink
- Channe 选用 FileChanne
KafkaSource 需订阅 Kafka 中的 13 个 topic,HDFSSink 需要将不同 topic 的数据写到不同的路径,并且路径中应当包含一层日期,用于区分每天的数据
配置要点 :
KafkaSource
#订阅13个topic
kafka.topics =
cart_info,comment_info,coupon_use,favor_info,order_detail_activity,order_detail_coupon,order_detail,order_info,order_refund_info,order_ status_log,payment_info,refund_payment,user_info
#为Event增加一个header,key为topic,value为Event来自的Kafka Topic。
setTopicHeader = true
topidHeader = topic
#自定义时间戳拦截器为Event增加一个header,key 为timestamp,value为json字符串中ts字段的值
interceptors = il
interceptors.i1.type = TimeStampInterceptor.Builder
HDFSSink
#path中包含自定义转义序列和时间转移序列,用于将不同topic的数据放到不同的路径,以及不同日期的数据放到不同的路径
path=/origin_data/gmall/db/%{
topic}_inc/%Y-%m-%d
数据实例 :
创建 Flume 配置文件
Flume 的 job 目录下创建 kafka_to_hdfs_db.conf
vim job/kafka_to_hdfs_db.conf
配置文件内容 :
a1.sources = r1
a1.channels = c1
a1.sinks = k1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = cpu101:9092,cpu102:9092
a1.sources.r1.kafka.topics = cart_info,comment_info,coupon_use,favor_info,order_detail_activity,order_detail_coupon,order_detail,order_info,order_refund_info,order_status_log,payment_info,refund_payment,user_info
a1.sources.r1.kafka.consumer.group.id = flume
a1.sources.r1.setTopicHeader = true
a1.sources.r1.topicHeader = topic
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.cpucode.flume.interceptor.db.TimestampInterceptor$Builder
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume-1.9.0/checkpoint/behavior2
a1.channels.c1.dataDirs = /opt/module/flume-1.9.0/data/behavior2/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1123456
a1.channels.c1.keep-alive = 6
## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/db/%{
topic}_inc/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = db
a1.sinks.k1.hdfs.round = false
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = gzip
## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
分发 :
xsync job/
编写Flume拦截器
新建一个Maven项目
pom.xml
文件 :
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.62</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
在 com.cpucode.flume.interceptor.db
包下创建 TimestampInterceptor
类
package com.cpucode.flume.interceptor.db;
import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.StandardCharsets;
import java.util.List;
import java.util.Map;
/** * @author : cpucode * @date : 2022/3/12 14:15 * @github : https://github.com/CPU-Code * @csdn : https://blog.csdn.net/qq_44226094 */
public class TimestampInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
Map<String, String> headers = event.getHeaders();
String log = new String(event.getBody(), StandardCharsets.UTF_8);
JSONObject jsonObject = JSONObject.parseObject(log);
Long ts = jsonObject.getLong("ts");
//Maxwell输出的数据中的ts字段时间戳单位为秒,Flume HDFSSink要求单位为毫秒
String timeMills = String.valueOf(ts * 1000);
headers.put("timestamp", timeMills);
return event;
}
@Override
public List<Event> intercept(List<Event> list) {
for (Event event : list) {
intercept(event);
}
return list;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new TimestampInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
打好的包放入到 cpu103 的 /opt/module/flume-1.9.0/lib
文件夹下
ls | grep flumeETL-3.1.0-jar-with-dependencies.jar
编写 Flume 启停脚本
/home/cpu/bin
目录下创建脚本 f3.sh
vim f3.sh
#!/bin/bash
case $1 in
"start")
echo " --------启动 cpu103 业务数据flume-------"
ssh cpu103 "nohup /opt/module/flume-1.9.0/bin/flume-ng agent -n a1 -c /opt/module/flume-1.9.0/conf -f /opt/module/flume-1.9.0/job/kafka_to_hdfs_db.conf >/dev/null 2>&1 &"
;;
"stop")
echo " --------停止 cpu103 业务数据flume-------"
ssh cpu103 "ps -ef | grep kafka_to_hdfs_db.conf | grep -v grep |awk '{print \$2}' | xargs -n1 kill"
;;
esac
脚本执行权限
chmod 777 f3.sh
通道测试
启动 Zookeeper、Kafka 集群
Zookeeper 分布式安装
https://blog.csdn.net/qq_44226094/article/details/123119682
Kafka 分布式安装部署 :
https://blog.csdn.net/qq_44226094/article/details/123121544
f3启动
f3.sh start
生成模拟数据
java -jar gmall2020-mock-db-2021-11-14.jar
HDFS 上的目标路径是否有数据出现
数据目标路径的日期说明 :
发现目标路径中的日期,并非模拟数据的业务日期,而是当前日期
为了模拟真实环境 , 修改 Maxwell 配置文件 config.properties ,增加 mock_date 参数
#该日期须和 /opt/module/db_log/application.properties 中的 mock.date 参数保持一致
mock_date=2020-06-14
仅供学习使用,修改该参数后重启Maxwell才可生效
重启Maxwell
mxw.sh restart
重新生成模拟数据
java -jar gmall2020-mock-db-2021-11-14.jar
观察HDFS目标路径日期是否正常
增量表首日全量同步
增量表需要在首日进行一次全量同步,后续每日再进行增量同步,首日全量同步可以使用 Maxwell 的 bootstrap
功能
mysql_to_kafka_inc_init.sh
vim mysql_to_kafka_inc_init.sh
#!/bin/bash
# 该脚本的作用是初始化所有的增量表,只需执行一次
MAXWELL_HOME=/opt/module/maxwell-1.29.2-study
import_data() {
$MAXWELL_HOME/bin/maxwell-bootstrap --database gmall --table $1 --config $MAXWELL_HOME/config.properties
}
case $1 in
"cart_info")
import_data cart_info
;;
"comment_info")
import_data comment_info
;;
"coupon_use")
import_data coupon_use
;;
"favor_info")
import_data favor_info
;;
"order_detail")
import_data order_detail
;;
"order_detail_activity")
import_data order_detail_activity
;;
"order_detail_coupon")
import_data order_detail_coupon
;;
"order_info")
import_data order_info
;;
"order_refund_info")
import_data order_refund_info
;;
"order_status_log")
import_data order_status_log
;;
"payment_info")
import_data payment_info
;;
"refund_payment")
import_data refund_payment
;;
"user_info")
import_data user_info
;;
"all")
import_data cart_info
import_data comment_info
import_data coupon_use
import_data favor_info
import_data order_detail
import_data order_detail_activity
import_data order_detail_coupon
import_data order_info
import_data order_refund_info
import_data order_status_log
import_data payment_info
import_data refund_payment
import_data user_info
;;
esac
mysql_to_kafka_inc_init.sh
增加执行权限
chmod 777 mysql_to_kafka_inc_init.sh
清理历史数据
hadoop fs -ls /origin_data/gmall/db | grep _inc | awk '{print $8}' | xargs hadoop fs -rm -r -f
执行同步脚本
mysql_to_kafka_inc_init.sh all
观察HDFS上是否重新出现增量表数据
增量表同步总结
增量表同步,需要在首日进行一次全量同步,后续每日才是增量同步
首日进行全量同步时,需先启动数据通道,包括 Maxwell、Kafka、Flume,然后执行增量表首日同步脚本 mysql_to_kafka_inc_init.sh
进行同步
每日只需保证采集通道正常运行即可,Maxwell 会实时将变动数据发往 Kafka
行为采集数据
启动 f1 , kafka , f2
数据是动态监控本地磁盘文件的 ,如果生产数据 ,会被发送到对应的 HDFS 文件夹中
启动所有的服务之后调用 lg.sh
模拟生成行为数据
如果需要生产 6月15号 的数据 ,只需要修改 application.yml
文件中的参数 之后再执行 lg.sh
业务数据采集
修改版的 maxwell
, 可以手动控制 json
中的时间
同步数据:
- 使用
gen_import_config.py
脚本能传入库名和表名生产对应的 json 文件 - 使用
gen_import_config.sh
脚本一次性生成全部全量表的 json 文件 ( 前面两步只需要操作一次 以后再使用都不需要重复操作 ) - 使用同步数据脚本
mysql_to_hdfs_full.sh all
日期 ( 必须保证数据生产一天 导入一天的 不能一次性把数据全部生产)
同步数据:
- 启动 maxwell , f3 , kafka
- 首日同步使用
maxwell-bootstrap
功能 直接用脚本
mysql_to_kafka_inc_init.sh all
不能填写日期 , 因为日期在 maxwell 的配置文件中写死了
每日同步 :
- 修改
maxwell
的配置文件 , 将日期修改为 06-15 之后重启maxwell
- 修改
application.properties
文件 , 将日期修改为 06-15 同时将重置内容设置为 0 , 不再重置 , 之后调用java -jar gmall2020-mock-db-2021-11-14.jar
生产数据maxwell
会自动监控完成同步
电商数据仓库系统 :
https://blog.csdn.net/qq_44226094/article/details/123013113
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/10649.html