大家好,欢迎来到IT知识分享网。
引言
分类是机器学习中监督学习的一种重要应用,基于统计的机器学习方法可以使用SVM进行二分类,可以使用决策书,梯度提升树等进行多分类。
对于二分类模型,我们通常可以使用ROC曲线来评估模型的预测效果。这里,我们介绍一下在多分类中衡量模型评估准确度的一种方法–kappa系数评估方法。
Kappa系数
首先,我们介绍一下kappa系数:
kappa系数是用在统计学中评估一致性的一种方法,我们可以用他来进行多分类模型准确度的评估,这个系数的取值范围是[-1,1],实际应用中,一般是[0,1],与ROC曲线中一般不会出现下凸形曲线的原理类似。
这个系数的值越高,则代表模型实现的分类准确度越高。kappa系数的计算方法可以这样来表示:
其中,p0表示为总的分类准确度;
pe表示为
其中,
代表第i类真实样本个数,
代表第i类预测出来的样本个数。
例子
例子数据来源:
https://blog.csdn.net/xtingjie/article/details/72803029
对于该表中的数据,则有:
代码
用python语言来实现,则有:
def kappa(matrix):
n = np.sum(matrix)
sum_po = 0
sum_pe = 0
for i in range(len(matrix[0])):
sum_po += matrix[i][i]
row = np.sum(matrix[i, :])
col = np.sum(matrix[:, i])
sum_pe += row * col
po = sum_po / n
pe = sum_pe / (n * n)
# print(po, pe)
return (po - pe) / (1 - pe)
其中,matrix是一个方阵,若共有i个类别,则matrix.shape = (i,i).
用下面的代码进行测试:
import numpy as np
matrix = [
[239,21,16],
[16,73,4]
[6,9,280]]
matrix = np.array(matrix)
print(kappa(matrix))
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/11963.html