大家好,欢迎来到IT知识分享网。
贪心算法
贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
基本思路
思想
贪心算法的基本思路是从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止 。
步骤
遍历初始集合X中的备选元素
利用贪心策略在X中确定一个元素,并将其加入到可行解S中
得到可行解S
P即为贪心策略,用来选择符合条件的元素。
例子——硬币找零
假设某国硬币面值有1,5,10,25,100元五种面额,若店员为顾客找零时,需要给顾客找零a=36元,求硬币数最少的情况。
这里我们的贪心策略为:
先找到最接近a的值,然后对a进行更新,然后进行循环。
代码实现
defshortNum(a):
coins= [1,5,10,25,100]
out=[]
coins= coins[::-1]for i incoins:
num= a//i
out=out+[i,]*num
a= a-num*iif a<=0:break
returnout
a= 36
print(shortNum(a))
例子——任务规划
问题描述:
输入为任务集合X= [r1,r2,r3,…,rn],每个任务ri,都对应着一个起始时间ai与结束时间bi
要求输出为最多的相容的任务集。
如上图,r1与r2相容,r3与r1和r2都不相容。
那么这里的贪心策略我们可以设为:
先将结束时间最短的任务加入到S中,
再从剩下的任务的任务中选择结束时间最短的,且判断与S集合中的任务是否相容
若不相容,则换下一个时间最短的任务,并进行比较
循环,直至X为空。
代码实现
#任务规划
from collections importOrderedDict
task=OrderedDict()
task[‘r1’] = [0,4]
task[‘r2’] = [5,8]
task[‘r3’] = [10,13]
task[‘r4’] = [15,18]
task[‘r5’] = [7,11]
task[‘r6’] = [2,6]
task[‘r7’] = [2,6]
task[‘r8’] = [2,6]
task[‘r9’] = [12,16]
task[‘r10’] = [12,16]
task[‘r11’] = [12,16]
task[‘r12’] = [0,3]
listTask=list(task.items())#根据bi进行排序,结束时间早的在前面(冒泡排序)
for i in range(len(listTask)-1):for j in range(len(listTask)-i-1):if listTask[j][1][1] > listTask[j+1][1][1]:
listTask[j],listTask[j+1]=listTask[j+1],listTask[j]print(listTask)
out=[]
out.append(listTask.pop(0))defisValid(temp,out):for k inrange(len(out)):if temp[1][0]
returnFalsereturnTruefor j inrange(len(listTask)):
temp=listTask.pop(0)#判断是否相交
#相交则continue
#不相交则out.append(temp)
for k inrange(len(out)):ifisValid(temp,out):
out.append(temp)#else:continue 语句可以不写
else:continue
print(out)
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/12573.html