大家好,欢迎来到IT知识分享网。
高中数学必修二平面解析几何重点介绍两直线的位置关系基础知识和易误点,并用平面解析几何两直线3个经典习题和2017年高考试题归纳与整理。
一、 基础知识
1、 两直线的平行、垂直与其斜率的关系
2.两条直线的交点
3.三种距离
二、平面解析几何之两直线的位置关系辨明三个易误点
三、平面解析几何 经典案例
1、两条直线平行与垂直
(1)设不同直线l1:2x-my-1=0,l2:(m-1)x-y+1=0,则“m=2”是“l1∥l2”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
(2)经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程为________.
两条直线平行与垂直解题方法
由一般式确定两直线位置关系的方法
2、距离公式
(1)已知A(2,0),B(0,2),若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为( )
A.4 B.3
C.2 D.1
(2)若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为21313,则c的值是________.
距离公式解题方法
3、对称问题
已知直线l:2x-3y+1=0,点A(-1,-2).求:
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A(-1,-2)对称的直线l′的方程.
对称问题解题方法
(2017·南昌模拟)设两条直线的方程分别为x+y+a=0,x+y+b=0,已知a,b是方程x2+x+c=0的两个实根,且0≤c≤18,则这两条直线之间的距离的最大值和最小值分别是( )
好了,今天分享就到这里了,关于高中数学必修二平面解析几何之两直线的位置关系习题需要的同学,可以私信或者留言给老师。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/12995.html