矩阵相关定义性质全总结

矩阵相关定义性质全总结矩阵最全相关定义性质总结 0 前言矩阵是线性代数中的核心内容 所以我写这篇文章对矩阵 研究生以下阶段 进行一个完整的叙述

大家好,欢迎来到IT知识分享网。

矩阵相关定义性质全总结

0.前言

矩阵是线性代数中的核心内容,所以我写这篇文章对矩阵(研究生以下阶段)进行一个完整的叙述。虽然是主要说矩阵,但是我也会将行列式、向量、线性方程组三个方面也包含在内,不过是概述的形式,具体的叙述会另外展开写。能够见到的大多数文章还是以对矩阵的介绍为主,我想可能很多人最需要的是了解矩阵的有哪些细分(比如矩阵相似、矩阵合同),以及这些细分的充要、必要、充分条件,还有这些细分的性质。所以我会在整体介绍完之后,进行一个细分的总结
本文适合考研或在学线代者复习线性代数。
本文是总结,一些费时而又用处不大的图不会展示,见谅。

1.行列式、向量、线性方程组

将这三者写在最前面,我不会咋此进行展开,但是会另写文章叙述。
行列式向量线性方程组特征值和特征向量
其中行列式是矩阵计算的基础,内容不难,但是涉及一些计算技巧。向量是构成线性方程组的重要部分,而我们都知道,矩阵最开始就是为了表示线性方程组的。

2.概念

  1. 定义:m×n矩阵为m×n个数排成的m行n列的表格,当m=n时,矩阵A称为n阶方阵或者n阶矩阵
  2. 零矩阵:矩阵所有元素都为0。
  3. 同型矩阵:A矩阵为m×n矩阵,B矩阵为s×t矩阵,如果m=s,n=t,A和B即为同型矩阵。
  4. A和B相等:两个同型矩阵对应的元素都相等
  5. |A|(detA):n阶方阵A构成的行列式。

#只有方阵才有行列式
#矩阵A是表格,而行列式|A|是数

3.运算

  1. 加法:两个同型矩阵可以相加
  2. 数乘:k为数,数乘时是将k与矩阵中每一个元素进行乘积
  3. 乘法:设A是一个m×s矩阵,B是一个s×t矩阵(A的列数=B的行数),则A、B可乘,且乘积AB是一个m×t矩阵,记为C。其中C的第i行、第j列元素Cij是A的第i行s个元素和B的第j列s个对应元素两两乘积之和。(每个新元素等于原来两个矩阵对应行元素逐个乘上对应列元素,再加和
  4. 转置:将m×n型矩阵A=[aij]m×n的行列互换的到的n×m矩阵[aji]n×m,称为A的转置矩阵。
  5. 矩阵多项式:设A是n阶矩阵,f(x)=amxm+……+a1x+a0是x的多项式,则称 amAm+am-1Am-1+……+a1A+a0E为矩阵多项式,记为f(A)

#性质
Ⅰ.加法

  1. A+B=B+A
  2. (A+B)+C=A+(B+C)
  3. A+O=A (其中O是元素全为0的同型矩阵)
  4. A+(-A)=O

Ⅱ.数乘

  1. k(mA)=(km)A=m(kA)
  2. (k+m)A=kA+mA
  3. k(A+B)=kA+kB
  4. 1A=A
  5. 0A=O

Ⅲ.乘法

  1. (AB)C=A(BC)
  2. A(B+C)=AB+AC
  3. (B+C)A=BA+CA(注意顺序不可以颠倒

Ⅳ.转置

  1. (A+B)T=AT+BT
  2. (kA)T=kAT
  3. (AB)T=BTAT
  4. (AT)T=A

#注意:

  1. AB≠BA
  2. A≠O,B≠O,但有可能AB=O
  3. AB=AC,A≠O不能推出B=C
  4. (A+B)(A+B)=A2+AB+BA+B2
  5. (A+E)2=A2+2A+E
  6. (A+E)(A-E)=A2-E2
  7. AB=O 可推出B的列向量是AX=0的解

4.伴随矩阵

A*由矩阵A的行列式|A|的所有代数余子式构成,列对应行。
AA* = A*A=|A|E
(A*) -1=(A-1)*=(1/A)A(|A|≠0)
(KA)*=kn-1A*
(A*)T=(AT)*
|A*|=|A|n-1
(A*)*=|A|n-2A(n>=2)
A-1=(1/|A|)*A*
(AB)*=B*A*

对于伴随矩阵的秩:
在这里插入图片描述

5.可逆矩阵

A、B为n阶矩阵,且AB=BA=E,当A为可逆矩阵或非奇异矩阵,
B是A的逆矩阵,A-1=B
5.1定理

  1. A可逆,则A的逆矩阵唯一
  2. A可逆<=>|A|≠0(A满秩)
  3. 设A和B是n阶矩阵,且AB=E,则BA=E,A-1=B

5.2n阶矩阵A可逆的充分必要条件

  1. 存在n阶矩阵B,使AB=E(BA=E).
  2. |A|≠0,或者A满秩,或者A的列(行)向量线性无关
  3. 齐次方程组Ax=0只有零解
  4. 任意b,非齐次线性方程组Ax=b总有唯一解
  5. 矩阵A的特征值全不为0
  6. 能表示成一些初等矩阵的乘积:PN…P2P1A=E

5.3运算性质

  1. k≠0,(kA)-1=(1/k)A-1
  2. 如果A,B可逆,则(AB)-1=B-1A-1,特别地(A2)-1=(A-1)2
  3. AT可逆,则(AT)-1=(A-1)T
  4. (A-1)-1=A
  5. |A-1|=1/|A|

#即使A,B和A+B都可逆,一般的(A+B)-1≠A-1+B-1
5.4求逆矩阵的方法

  1. 公式法:|A|≠0,则A-1=(1/|A|)A*
  2. 初等变化:(A|E)—->(E|A-1)
  3. 用定义求B:使AB=E或BA=E,则A可逆,且A-1=B
  4. 分块矩阵:对角线直接求逆矩阵,副对角线求逆矩阵之外还好交换位置。

6.初等矩阵

6.1.1初等变换:设A是m×n矩阵,进行初等倍乘、互换、倍加行(列)变换,统称为初等变换。

  1. 倍乘:用某个非零常数k(k≠0)乘A的某行(列)的每个元素。
  2. 互换:互换A的某两行(列)的位置。
  3. 倍加行(列):将A的某行(列)元素的k 倍加到另一行(列)。

6.1.2初等矩阵:单位矩阵经一次初等变换得到的矩阵称为初等矩阵。如:

  1. E(2(k)):对第二行倍乘
  2. E(1,2):第一、二行(或一、二列)互换
  3. E(13(k)):第一行的k倍加到第三行,或者第三列的k倍加到第一列

6.1.3等价矩阵:矩阵A经过有限次初等变换变成矩阵B,则称A与B等价(可能有多个矩阵与A等价,其中等价的最简矩阵被称为A的等价标准型)

6.2性质

  1. 初等矩阵的转置仍然是初等矩阵
  2. 初等矩阵均是可逆矩阵(|A|≠0,满秩),且其逆矩阵仍是初等矩阵。
  3. 用初等矩阵P左乘(右乘)A,其结果PA(AP)相当于对A作相应的初等行(列)变换。

6.3行阶梯矩阵,行最简矩阵
6.3.1行阶梯矩阵

  1. 如果矩阵有零行(即这一行元素全是0),则零行在最底部
  2. 每个非零元素的主元(即该行的最左边的第一个非零元),它们的列指标随着行指标的递增而严格增大。
    6.3.2行最简矩阵
  3. 是行阶梯矩阵
  4. 非零行的主元都是1
  5. 主元所在的列的其他元素都是0

7.分块矩阵

后补

8.方阵的行列式

  1. |AT|=|A|
  2. |kA|=kn|A|
  3. |AB|=|A||B|(特别的|A2|=|A|2)
  4. |A*|=|A|n-1
  5. |A-1|=|A|-1
  6. 对角矩阵正对角:|A||B|,副对角:|A-1|=|A|-1

9.矩阵的秩

9.1.1k阶子式:在m×n矩阵A中,任取k行与k列(k<=m,k<=n),位于这些行与列的交叉点上的k2个元素按其在原来矩阵A中的次序可构成一个k阶行列式,称其为矩阵A的一个k阶子式。
9.2矩阵的秩:设A为m×n矩阵,若A中存在r阶子式不等于0,r阶以上子式均等于0,则称矩阵A的秩为r,记为r(A).零矩阵的秩规定为0.
性质

  1. r(A)=0 <=> A=O
  2. A≠O <=>r(A)>=1
  3. A是n阶矩阵,r(A)=n <=>|A|≠0 <=>A可逆,r(A)<n <=>|A|≠0 <=>A不可逆
  4. 若A是m×n矩阵,则r(A)<=min(m,n)
  5. 经过初等变换矩阵的秩不变。
  6. 设A是m×n矩阵,将A以行及列分块,得则有r(A)=A的行秩=A的列值

公式

  1. r(A)=r(AT);r(AAT)=r(A)
  2. 当k≠0时,r(kA)=r(A);r(A+B)<=r(A)+r(B)
  3. r(AB)<=min(r(A),r(B)),max(r(A),r(B))<=r(A,B)<=r(A)+r(B)
  4. 若A可逆,则r(AB)=r(B),r(BA)=r(B)
  5. 若A时m×n矩阵,B是n×s矩阵,AB=O,r(A)+r(B)<=n

10.正交矩阵

定义:设A为n阶矩阵,若AAT=ATA=E,则称A为正交矩阵。
性质

  1. AT=A-1
  2. A的行(列)向量都是单位向量且两两正交
  3. |A|=±1

11.相似矩阵

11.1定义

  1. 设A,B都是n阶矩阵,若存在可逆矩阵P,使得P-1AP=B,则称B是A的相似矩阵,或A相似于B,记为A∽B
  2. 若A∽λ,其中λ为对角阵,则称A可相似对角化,λ是A的相似标准形。

11.2性质

  1. A∽A
  2. 若A∽B => B∽A
  3. 若A∽B,B∽C =>A∽C
  4. n阶方阵 A可对角化的充分必要条件是A有n个线性无关的特征向量。(可得若n阶矩阵A有n个不同的特征值λ1、λ2……λn,则A可相似对角化,且对角矩阵元素一一对应特征值。)
  5. n阶矩阵 A可相似对角化的充分必要条件是A的每个特征值中,线性无关的特征向量的个数恰好等于该特征值的重数。

11.3相似的必要条件

  1. 特征多项式相同:|λE-A|=|λE-B|
  2. r(A)=r(B)
  3. A,B有相同的特征值
  4. |A|=|B|=特征值之积
  5. A的迹=B的迹=特征值之和
  6. A2∽B2(An∽Bn)
  7. A+KE∽B+KE
  8. 如果A可逆,A-1∽B-1

12.实对称矩阵

12.1定义:除了主对角线,两侧相对应的数相同的矩阵
12.2性质

  1. 实对称矩阵必可相似对角化
  2. 实对称矩阵的属于不同特征值对应的特征向量相互正交
  3. 设A为n阶实对称矩阵,则必存在正交阵Q,使得Q-1AQ=QTAQ=λ

13.矩阵合同

13.1定义:设A,B是两个n阶方阵,若存在可逆阵C,使得CTAC=B,则称A合同于B,记成A
13.2性质

  1. 反身性
  2. 对称性
  3. 传递性
  4. r(A)=r(B)
  5. 正负惯性指数相等

14.相似、合同、等价区分

图片来自https://blog.csdn.net/_38943651/article/details/102614300?ops_request_misc=&request_id=&biz_id=102&utm_source=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-1
可得:

  1. 相似矩阵必为等价矩阵,等价矩阵未必为相似矩阵,满足 PQ=E 的等价矩阵是相似矩阵。
  2. 合同矩阵必为等价矩阵,等价矩阵未必为合同矩阵,满足 pA=pB,qA=qB的等价矩阵是合同矩阵。
  3. 相似矩阵未必合同,合同矩阵未必相似。
  4. 正交相似矩阵必合同,正交合同矩阵必相似。
  5. 实对称矩阵相似必合同,实对称矩阵合同未必相似。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/133066.html

(0)
上一篇 2024-11-23 13:26
下一篇 2024-11-23 13:33

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信