9k字 | Promise/async/Generator实现原理解析

9k字 | Promise/async/Generator实现原理解析笔者刚接触async/await时,就被其暂停执行的特性吸引了,心想在没有原生API支持的情况下,await居然能挂起当前方法,实现暂停执行,我感到十分好奇。好奇心驱使我一层一层剥开有关JS异步编程的一切。阅读完本文,读者应该能够了解: 回归正题,文章开头我们先点一下Promi…

大家好,欢迎来到IT知识分享网。

笔者刚接触async/await时,就被其暂停执行的特性吸引了,心想在没有原生API支持的情况下,await居然能挂起当前方法,实现暂停执行,我感到十分好奇。好奇心驱使我一层一层剥开有关JS异步编程的一切。阅读完本文,读者应该能够了解:

  1. Promise的实现原理
  2. async/await的实现原理
  3. Generator的实现原理

Promise实现

在成文过程中,笔者查阅了很多讲解Promise实现的文章,但感觉大多文章都很难称得上条理清晰,有的上来就放大段Promise规范翻译,有的在Promise基础使用上浪费篇幅,又或者把一个简单的东西长篇大论,过度讲解,我推荐头铁的同学直接拉到本章小结看最终实现,结合着注释直接啃代码也能理解十之八九

回归正题,文章开头我们先点一下Promise为我们解决了什么问题:在传统的异步编程中,如果异步之间存在依赖关系,我们就需要通过层层嵌套回调来满足这种依赖,如果嵌套层数过多,可读性和可维护性都变得很差,产生所谓“回调地狱”,而Promise将回调嵌套改为链式调用,增加可读性和可维护性。下面我们就来一步步实现一个Promise:

1. 观察者模式

我们先来看一个最简单的Promise使用:

const p1 = new Promise((resolve, reject) => {
    setTimeout(() => {
        resolve('result')
    },
    1000);
}) 

p1.then(res => console.log(res), err => console.log(err))

观察这个例子,我们分析Promise的调用流程:

  • Promise的构造方法接收一个executor(),在new Promise()时就立刻执行这个executor回调
  • executor()内部的异步任务被放入宏/微任务队列,等待执行
  • then()被执行,收集成功/失败回调,放入成功/失败队列
  • executor()的异步任务被执行,触发resolve/reject,从成功/失败队列中取出回调依次执行

其实熟悉设计模式的同学,很容易就能意识到这是个观察者模式,这种收集依赖 -> 触发通知 -> 取出依赖执行 的方式,被广泛运用于观察者模式的实现,在Promise里,执行顺序是then收集依赖 -> 异步触发resolve -> resolve执行依赖。依此,我们可以勾勒出Promise的大致形状:

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._resolveQueue = []    // then收集的执行成功的回调队列
    this._rejectQueue = []     // then收集的执行失败的回调队列

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      // 从成功队列里取出回调依次执行
      while(this._resolveQueue.length) {
        const callback = this._resolveQueue.shift()
        callback(val)
      }
    }
    // 实现同resolve
    let _reject = (val) => {
      while(this._rejectQueue.length) {
        const callback = this._rejectQueue.shift()
        callback(val)
      }
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调,并push进对应队列
  then(resolveFn, rejectFn) {
    this._resolveQueue.push(resolveFn)
    this._rejectQueue.push(rejectFn)
  }
}

写完代码我们可以测试一下:

const p1 = new MyPromise((resolve, reject) => {
  setTimeout(() => {
    resolve('result')
  }, 1000);
})
p1.then(res => console.log(res))
//一秒后输出result

我们运用观察者模式简单的实现了一下thenresolve,使我们能够在then方法的回调里取得异步操作的返回值,但我们这个Promise离最终实现还有很长的距离,下面我们来一步步补充这个Promise:

2. Promise A+规范

上面我们已经简单地实现了一个超低配版Promise,但我们会看到很多文章和我们写的不一样,他们的Promise实现中还引入了各种状态控制,这是由于ES6的Promise实现需要遵循Promise/A+规范,是规范对Promise的状态控制做了要求。Promise/A+的规范比较长,这里只总结两条核心规则:

  1. Promise本质是一个状态机,且状态只能为以下三种:Pending(等待态)Fulfilled(执行态)Rejected(拒绝态),状态的变更是单向的,只能从Pending -> Fulfilled 或 Pending -> Rejected,状态变更不可逆
  2. then方法接收两个可选参数,分别对应状态改变时触发的回调。then方法返回一个promise。then 方法可以被同一个 promise 调用多次。

9k字 | Promise/async/Generator实现原理解析 根据规范,我们补充一下Promise的代码:

//Promise/A+规范的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
      this._status = FULFILLED              // 变更状态

      // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
      // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
      while(this._resolveQueue.length) {    
        const callback = this._resolveQueue.shift()
        callback(val)
      }
    }
    // 实现同resolve
    let _reject = (val) => {
      if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
      this._status = REJECTED               // 变更状态
      while(this._rejectQueue.length) {
        const callback = this._rejectQueue.shift()
        callback(val)
      }
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    this._resolveQueue.push(resolveFn)
    this._rejectQueue.push(rejectFn)
  }
}

3. then的链式调用

补充完规范,我们接着来实现链式调用,这是Promise实现的重点和难点,我们先来看一下then是如何链式调用的:

const p1 = new Promise((resolve, reject) => {
  resolve(1)
})

p1
  .then(res => {
    console.log(res)
    //then回调中可以return一个Promise
    return new Promise((resolve, reject) => {
      setTimeout(() => {
        resolve(2)
      }, 1000);
    })
  })
  .then(res => {
    console.log(res)
    //then回调中也可以return一个值
    return 3
  })
  .then(res => {
    console.log(res)
  })

输出

1
2
3

我们思考一下如何实现这种链式调用:

  1. 显然.then()需要返回一个Promise,这样才能找到then方法,所以我们会把then方法的返回值包装成Promise。
  2. .then()的回调需要拿到上一个.then()的返回值
  3. .then()的回调需要顺序执行,以上面这段代码为例,虽然中间return了一个Promise,但执行顺序仍要保证是1->2->3。我们要等待当前Promise状态变更后,再执行下一个then收集的回调,这就要求我们对then的返回值分类讨论
// then方法
then(resolveFn, rejectFn) {
  //return一个新的promise
  return new MyPromise((resolve, reject) => {
    //把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
    const fulfilledFn = value => {
      try {
        //执行第一个(当前的)Promise的成功回调,并获取返回值
        let x = resolveFn(value)
        //分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
        //这里resolve之后,就能被下一个.then()的回调获取到返回值,从而实现链式调用
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
    //把后续then收集的依赖都push进当前Promise的成功回调队列中(_rejectQueue), 这是为了保证顺序调用
    this._resolveQueue.push(fulfilledFn)

    //reject同理
    const rejectedFn  = error => {
      try {
        let x = rejectFn(error)
        x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
      } catch (error) {
        reject(error)
      }
    }
    this._rejectQueue.push(rejectedFn)
  })
}

然后我们就能测试一下链式调用:

const p1 = new MyPromise((resolve, reject) => {
  setTimeout(() => {
    resolve(1)
  }, 500);
})

p1
  .then(res => {
    console.log(res)
    return 2
  })
  .then(res => {
    console.log(res)
    return 3
  })
  .then(res => {
    console.log(res)
  })

//输出 1 2 3

4.值穿透 & 状态已变更的情况

我们已经初步完成了链式调用,但是对于 then() 方法,我们还要两个细节需要处理一下

  1. 值穿透:根据规范,如果 then() 接收的参数不是function,那么我们应该忽略它。如果没有忽略,当then()回调不为function时将会抛出异常,导致链式调用中断
  2. 处理状态为resolve/reject的情况:其实我们上边 then() 的写法是对应状态为padding的情况,但是有些时候,resolve/reject 在 then() 之前就被执行(比如Promise.resolve().then()),如果这个时候还把then()回调push进resolve/reject的执行队列里,那么回调将不会被执行,因此对于状态已经变为fulfilledrejected的情况,我们直接执行then回调:
// then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行
    typeof resolveFn !== 'function' ? resolveFn = value => value : null
    typeof rejectFn !== 'function' ? rejectFn = reason => {
      throw new Error(reason instanceof Error? reason.message:reason);
    } : null
  
    // return一个新的promise
    return new MyPromise((resolve, reject) => {
      // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
      const fulfilledFn = value => {
        try {
          // 执行第一个(当前的)Promise的成功回调,并获取返回值
          let x = resolveFn(value)
          // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      // reject同理
      const rejectedFn  = error => {
        try {
          let x = rejectFn(error)
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      switch (this._status) {
        // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
        case PENDING:
          this._resolveQueue.push(fulfilledFn)
          this._rejectQueue.push(rejectedFn)
          break;
        // 当状态已经变为resolve/reject时,直接执行then回调
        case FULFILLED:
          fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
          break;
        case REJECTED:
          rejectedFn(this._value)
          break;
      }
    })
  }

5.兼容同步任务

完成了then的链式调用以后,我们再处理一个前边的细节,然后放出完整代码。上文我们说过,Promise的执行顺序是new Promise -> then()收集回调 -> resolve/reject执行回调,这一顺序是建立在executor是异步任务的前提上的,如果executor是一个同步任务,那么顺序就会变成new Promise -> resolve/reject执行回调 -> then()收集回调,resolve的执行跑到then之前去了,为了兼容这种情况,我们给resolve/reject执行回调的操作包一个setTimeout,让它异步执行。

这里插一句,有关这个setTimeout,其实还有一番学问。虽然规范没有要求回调应该被放进宏任务队列还是微任务队列,但其实Promise的默认实现是放进了微任务队列,我们的实现(包括大多数Promise手动实现和polyfill的转化)都是使用setTimeout放入了宏任务队列(当然我们也可以用MutationObserver模拟微任务)

//Promise/A+规定的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._value = undefined    // 储存then回调return的值
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      //把resolve执行回调的操作封装成一个函数,放进setTimeout里,以兼容executor是同步代码的情况
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = FULFILLED              // 变更状态
        this._value = val                     // 储存当前value

        // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
        // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
        while(this._resolveQueue.length) {    
          const callback = this._resolveQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // 实现同resolve
    let _reject = (val) => {
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = REJECTED               // 变更状态
        this._value = val                     // 储存当前value
        while(this._rejectQueue.length) {
          const callback = this._rejectQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行
    typeof resolveFn !== 'function' ? resolveFn = value => value : null
    typeof rejectFn !== 'function' ? rejectFn = reason => {
      throw new Error(reason instanceof Error? reason.message:reason);
    } : null
  
    // return一个新的promise
    return new MyPromise((resolve, reject) => {
      // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
      const fulfilledFn = value => {
        try {
          // 执行第一个(当前的)Promise的成功回调,并获取返回值
          let x = resolveFn(value)
          // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      // reject同理
      const rejectedFn  = error => {
        try {
          let x = rejectFn(error)
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      switch (this._status) {
        // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
        case PENDING:
          this._resolveQueue.push(fulfilledFn)
          this._rejectQueue.push(rejectedFn)
          break;
        // 当状态已经变为resolve/reject时,直接执行then回调
        case FULFILLED:
          fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
          break;
        case REJECTED:
          rejectedFn(this._value)
          break;
      }
    })
  }
}

然后我们可以测试一下这个Promise:

const p1 = new MyPromise((resolve, reject) => {
  resolve(1)          //同步executor测试
})

p1
  .then(res => {
    console.log(res)
    return 2          //链式调用测试
  })
  .then()             //值穿透测试
  .then(res => {
    console.log(res)
    return new MyPromise((resolve, reject) => {
      resolve(3)      //返回Promise测试
    })
  })
  .then(res => {
    console.log(res)
    throw new Error('reject测试')   //reject测试
  })
  .then(() => {}, err => {
    console.log(err)
  })

// 输出 
// 1 
// 2 
// 3 
// Error: reject测试

到这里,我们已经实现了Promise的主要功能(`∀´)Ψ剩下的几个方法都非常简单,我们顺手收拾掉:

Promise.prototype.catch()

catch()方法返回一个Promise,并且处理拒绝的情况。它的行为与调用Promise.prototype.then(undefined, onRejected) 相同。

//catch方法其实就是执行一下then的第二个回调
catch(rejectFn) {
  return this.then(undefined, rejectFn)
}

Promise.prototype.finally()

finally()方法返回一个Promise。在promise结束时,无论结果是fulfilled或者是rejected,都会执行指定的回调函数。在finally之后,还可以继续then。并且会将值原封不动的传递给后面的then

//finally方法
finally(callback) {
  return this.then(
    value => MyPromise.resolve(callback()).then(() => value),             // MyPromise.resolve执行回调,并在then中return结果传递给后面的Promise
    reason => MyPromise.resolve(callback()).then(() => { throw reason })  // reject同理
  )
}

PS. 有同学问我MyPromise.resolve(callback())的意义,这里补充解释一下:这个写法其实涉及到一个finally()的使用细节,finally()如果return了一个reject状态的Promise,将会改变当前Promise的状态,这个MyPromise.resolve就用于改变Promise状态,在finally()没有返回reject态Promise或throw错误的情况下,去掉MyPromise.resolve也是一样的(欢迎大家向我提问,勘误的过程中也能很好地加深自己对Promise的理解,大家可以在各个交流群里直接@我)

参考资料:对 Promise.prototype.finally() 的粗浅理解

Promise.resolve()

Promise.resolve(value)方法返回一个以给定值解析后的Promise 对象。如果该值为promise,返回这个promise;如果这个值是thenable(即带有”then” 方法)),返回的promise会“跟随”这个thenable的对象,采用它的最终状态;否则返回的promise将以此值完成。此函数将类promise对象的多层嵌套展平。

//静态的resolve方法
static resolve(value) {
  if(value instanceof MyPromise) return value // 根据规范, 如果参数是Promise实例, 直接return这个实例
  return new MyPromise(resolve => resolve(value))
}

Promise.reject()

Promise.reject()方法返回一个带有拒绝原因的Promise对象。

//静态的reject方法
static reject(reason) {
  return new MyPromise((resolve, reject) => reject(reason))
}

Promise.all()

Promise.all(iterable)方法返回一个 Promise 实例,此实例在 iterable 参数内所有的 promise 都“完成(resolved)”或参数中不包含 promise 时回调完成(resolve);如果参数中 promise 有一个失败(rejected),此实例回调失败(reject),失败原因的是第一个失败 promise 的结果。

//静态的all方法
static all(promiseArr) {
  let index = 0
  let result = []
  return new MyPromise((resolve, reject) => {
    promiseArr.forEach((p, i) => {
      //Promise.resolve(p)用于处理传入值不为Promise的情况
      MyPromise.resolve(p).then(
        val => {
          index++
          result[i] = val
          //所有then执行后, resolve结果
          if(index === promiseArr.length) {
            resolve(result)
          }
        },
        err => {
          //有一个Promise被reject时,MyPromise的状态变为reject
          reject(err)
        }
      )
    })
  })
}

Promise.race()

Promise.race(iterable)方法返回一个 promise,一旦迭代器中的某个promise解决或拒绝,返回的 promise就会解决或拒绝。

static race(promiseArr) {
  return new MyPromise((resolve, reject) => {
    //同时执行Promise,如果有一个Promise的状态发生改变,就变更新MyPromise的状态
    for (let p of promiseArr) {
      MyPromise.resolve(p).then(  //Promise.resolve(p)用于处理传入值不为Promise的情况
        value => {
          resolve(value)        //注意这个resolve是上边new MyPromise的
        },
        err => {
          reject(err)
        }
      )
    }
  })
}

完整代码

//Promise/A+规定的三种状态
const PENDING = 'pending'
const FULFILLED = 'fulfilled'
const REJECTED = 'rejected'

class MyPromise {
  // 构造方法接收一个回调
  constructor(executor) {
    this._status = PENDING     // Promise状态
    this._value = undefined    // 储存then回调return的值
    this._resolveQueue = []    // 成功队列, resolve时触发
    this._rejectQueue = []     // 失败队列, reject时触发

    // 由于resolve/reject是在executor内部被调用, 因此需要使用箭头函数固定this指向, 否则找不到this._resolveQueue
    let _resolve = (val) => {
      //把resolve执行回调的操作封装成一个函数,放进setTimeout里,以兼容executor是同步代码的情况
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = FULFILLED              // 变更状态
        this._value = val                     // 储存当前value

        // 这里之所以使用一个队列来储存回调,是为了实现规范要求的 "then 方法可以被同一个 promise 调用多次"
        // 如果使用一个变量而非队列来储存回调,那么即使多次p1.then()也只会执行一次回调
        while(this._resolveQueue.length) {    
          const callback = this._resolveQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // 实现同resolve
    let _reject = (val) => {
      const run = () => {
        if(this._status !== PENDING) return   // 对应规范中的"状态只能由pending到fulfilled或rejected"
        this._status = REJECTED               // 变更状态
        this._value = val                     // 储存当前value
        while(this._rejectQueue.length) {
          const callback = this._rejectQueue.shift()
          callback(val)
        }
      }
      setTimeout(run)
    }
    // new Promise()时立即执行executor,并传入resolve和reject
    executor(_resolve, _reject)
  }

  // then方法,接收一个成功的回调和一个失败的回调
  then(resolveFn, rejectFn) {
    // 根据规范,如果then的参数不是function,则我们需要忽略它, 让链式调用继续往下执行
    typeof resolveFn !== 'function' ? resolveFn = value => value : null
    typeof rejectFn !== 'function' ? rejectFn = reason => {
      throw new Error(reason instanceof Error? reason.message:reason);
    } : null
  
    // return一个新的promise
    return new MyPromise((resolve, reject) => {
      // 把resolveFn重新包装一下,再push进resolve执行队列,这是为了能够获取回调的返回值进行分类讨论
      const fulfilledFn = value => {
        try {
          // 执行第一个(当前的)Promise的成功回调,并获取返回值
          let x = resolveFn(value)
          // 分类讨论返回值,如果是Promise,那么等待Promise状态变更,否则直接resolve
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      // reject同理
      const rejectedFn  = error => {
        try {
          let x = rejectFn(error)
          x instanceof MyPromise ? x.then(resolve, reject) : resolve(x)
        } catch (error) {
          reject(error)
        }
      }
  
      switch (this._status) {
        // 当状态为pending时,把then回调push进resolve/reject执行队列,等待执行
        case PENDING:
          this._resolveQueue.push(fulfilledFn)
          this._rejectQueue.push(rejectedFn)
          break;
        // 当状态已经变为resolve/reject时,直接执行then回调
        case FULFILLED:
          fulfilledFn(this._value)    // this._value是上一个then回调return的值(见完整版代码)
          break;
        case REJECTED:
          rejectedFn(this._value)
          break;
      }
    })
  }

  //catch方法其实就是执行一下then的第二个回调
  catch(rejectFn) {
    return this.then(undefined, rejectFn)
  }

  //finally方法
  finally(callback) {
    return this.then(
      value => MyPromise.resolve(callback()).then(() => value),             //执行回调,并returnvalue传递给后面的then
      reason => MyPromise.resolve(callback()).then(() => { throw reason })  //reject同理
    )
  }

  //静态的resolve方法
  static resolve(value) {
    if(value instanceof MyPromise) return value //根据规范, 如果参数是Promise实例, 直接return这个实例
    return new MyPromise(resolve => resolve(value))
  }

  //静态的reject方法
  static reject(reason) {
    return new MyPromise((resolve, reject) => reject(reason))
  }

  //静态的all方法
  static all(promiseArr) {
    let index = 0
    let result = []
    return new MyPromise((resolve, reject) => {
      promiseArr.forEach((p, i) => {
        //Promise.resolve(p)用于处理传入值不为Promise的情况
        MyPromise.resolve(p).then(
          val => {
            index++
            result[i] = val
            if(index === promiseArr.length) {
              resolve(result)
            }
          },
          err => {
            reject(err)
          }
        )
      })
    })
  }

  //静态的race方法
  static race(promiseArr) {
    return new MyPromise((resolve, reject) => {
      //同时执行Promise,如果有一个Promise的状态发生改变,就变更新MyPromise的状态
      for (let p of promiseArr) {
        MyPromise.resolve(p).then(  //Promise.resolve(p)用于处理传入值不为Promise的情况
          value => {
            resolve(value)        //注意这个resolve是上边new MyPromise的
          },
          err => {
            reject(err)
          }
        )
      }
    })
  }
}

洋洋洒洒150多行的代码,到这里,我们终于可以给Promise的实现做一个结尾了。我们从一个最简单的Promise使用实例开始,通过对调用流程的分析,根据观察者模式实现了Promise的大致骨架,然后依据Promise/A+规范填充代码,重点实现了then 的链式调用,最后完成了Promise的静态/实例方法。其实Promise实现在整体上并没有太复杂的思想,但我们日常使用的时候往往忽略了很多Promise细节,因而很难写出一个符合规范的Promise实现,源码的实现过程,其实也是对Promise使用细节重新学习的过程。

async/await实现

虽然前边花了这么多篇幅讲Promise的实现,不过探索async/await暂停执行的机制才是我们的初衷,下面我们就来进入这一块的内容。同样地,开头我们点一下async/await的使用意义。 在多个回调依赖的场景中,尽管Promise通过链式调用取代了回调嵌套,但过多的链式调用可读性仍然不佳,流程控制也不方便,ES7 提出的async 函数,终于让 JS 对于异步操作有了终极解决方案,简洁优美地解决了以上两个问题。

设想一个这样的场景,异步任务a->b->c之间存在依赖关系,如果我们通过then链式调用来处理这些关系,可读性并不是很好,如果我们想控制其中某个过程,比如在某些条件下,b不往下执行到c,那么也不是很方便控制

Promise.resolve(a)
  .then(b => {
    // do something
  })
  .then(c => {
    // do something
  })

但是如果通过async/await来实现这个场景,可读性和流程控制都会方便不少。

async () => {
  const a = await Promise.resolve(a);
  const b = await Promise.resolve(b);
  const c = await Promise.resolve(c);
}

那么我们要如何实现一个async/await呢,首先我们要知道,async/await实际上是对Generator(生成器)的封装,是一个语法糖。由于Generator出现不久就被async/await取代了,很多同学对Generator比较陌生,因此我们先来看看Generator的用法:

ES6 新引入了 Generator 函数,可以通过 yield 关键字,把函数的执行流挂起,通过next()方法可以切换到下一个状态,为改变执行流程提供了可能,从而为异步编程提供解决方案。

function* myGenerator() {
  yield '1'
  yield '2'
  return '3'
}

const gen = myGenerator();  // 获取迭代器
gen.next()  //{value: "1", done: false}
gen.next()  //{value: "2", done: false}
gen.next()  //{value: "3", done: true}

也可以通过给next()传参, 让yield具有返回值

function* myGenerator() {
  console.log(yield '1')  //test1
  console.log(yield '2')  //test2
  console.log(yield '3')  //test3
}

// 获取迭代器
const gen = myGenerator();

gen.next()
gen.next('test1')
gen.next('test2')
gen.next('test3')

我们看到Generator的用法,应该️会感到很熟悉,*/yieldasync/await看起来其实已经很相似了,它们都提供了暂停执行的功能,但二者又有三点不同:

  • async/await自带执行器,不需要手动调用next()就能自动执行下一步
  • async函数返回值是Promise对象,而Generator返回的是生成器对象
  • await能够返回Promise的resolve/reject的值

我们对async/await的实现,其实也就是对应以上三点封装Generator

1.自动执行

我们先来看一下,对于这样一个Generator,手动执行是怎样一个流程

function* myGenerator() {
  yield Promise.resolve(1);
  yield Promise.resolve(2);
  yield Promise.resolve(3);
}

// 手动执行迭代器
const gen = myGenerator()
gen.next().value.then(val => {
  console.log(val)
  gen.next().value.then(val => {
    console.log(val)
    gen.next().value.then(val => {
      console.log(val)
    })
  })
})

//输出1 2 3

我们也可以通过给gen.next()传值的方式,让yield能返回resolve的值

function* myGenerator() {
  console.log(yield Promise.resolve(1))   //1
  console.log(yield Promise.resolve(2))   //2
  console.log(yield Promise.resolve(3))   //3
}

// 手动执行迭代器
const gen = myGenerator()
gen.next().value.then(val => {
  // console.log(val)
  gen.next(val).value.then(val => {
    // console.log(val)
    gen.next(val).value.then(val => {
      // console.log(val)
      gen.next(val)
    })
  })
})

显然,手动执行的写法看起来既笨拙又丑陋,我们希望生成器函数能自动往下执行,且yield能返回resolve的值,基于这两个需求,我们进行一个基本的封装,这里async/await是关键字,不能重写,我们用函数来模拟:

function run(gen) {
  var g = gen()                     //由于每次gen()获取到的都是最新的迭代器,因此获取迭代器操作要放在_next()之前,否则会进入死循环

  function _next(val) {             //封装一个方法, 递归执行g.next()
    var res = g.next(val)           //获取迭代器对象,并返回resolve的值
    if(res.done) return res.value   //递归终止条件
    res.value.then(val => {         //Promise的then方法是实现自动迭代的前提
      _next(val)                    //等待Promise完成就自动执行下一个next,并传入resolve的值
    })
  }
  _next()  //第一次执行
}

对于我们之前的例子,我们就能这样执行:

function* myGenerator() {
  console.log(yield Promise.resolve(1))   //1
  console.log(yield Promise.resolve(2))   //2
  console.log(yield Promise.resolve(3))   //3
}

run(myGenerator)

这样我们就初步实现了一个async/await。上边的代码只有五六行,但并不是一下就能看明白的,我们之前用了四个例子来做铺垫,也是为了让读者更好地理解这段代码。 简单来说,我们封装了一个run方法,run方法里我们把执行下一步的操作封装成_next(),每次Promise.then()的时候都去执行_next(),实现自动迭代的效果。在迭代的过程中,我们还把resolve的值传入gen.next(),使得yield得以返回Promise的resolve的值

这里插一句,是不是只有.then方法这样的形式才能完成我们自动执行的功能呢?答案是否定的,yield后边除了接Promise,还可以接thunk函数,thunk函数不是一个新东西,所谓thunk函数,就是单参的只接受回调的函数,详细介绍可以看阮一峰Thunk 函数的含义和用法,无论是Promise还是thunk函数,其核心都是通过传入回调的方式来实现Generator的自动执行。thunk函数只作为一个拓展知识,理解有困难的同学也可以跳过这里,并不影响后续理解。

2.返回Promise & 异常处理

虽然我们实现了Generator的自动执行以及让yield返回resolve的值,但上边的代码还存在着几点问题:

  1. 需要兼容基本类型:这段代码能自动执行的前提是yield后面跟Promise,为了兼容后面跟着基本类型值的情况,我们需要把yield跟的内容(gen().next.value)都用Promise.resolve()转化一遍
  2. 缺少错误处理:上边代码里的Promise如果执行失败,就会导致后续执行直接中断,我们需要通过调用Generator.prototype.throw(),把错误抛出来,才能被外层的try-catch捕获到
  3. 返回值是Promiseasync/await的返回值是一个Promise,我们这里也需要保持一致,给返回值包一个Promise

我们改造一下run方法:

function run(gen) {
  //把返回值包装成promise
  return new Promise((resolve, reject) => {
    var g = gen()

    function _next(val) {
      //错误处理
      try {
        var res = g.next(val) 
      } catch(err) {
        return reject(err); 
      }
      if(res.done) {
        return resolve(res.value);
      }
      //res.value包装为promise,以兼容yield后面跟基本类型的情况
      Promise.resolve(res.value).then(
        val => {
          _next(val);
        }, 
        err => {
          //抛出错误
          g.throw(err)
        });
    }
    _next();
  });
}

然后我们可以测试一下:

function* myGenerator() {
  try {
    console.log(yield Promise.resolve(1)) 
    console.log(yield 2)   //2
    console.log(yield Promise.reject('error'))
  } catch (error) {
    console.log(error)
  }
}

const result = run(myGenerator)     //result是一个Promise
//输出 1 2 error

到这里,一个async/await的实现基本完成了。最后我们可以看一下babel对async/await的转换结果,其实整体的思路是一样的,但是写法稍有不同:

//相当于我们的run()
function _asyncToGenerator(fn) {
  // return一个function,和async保持一致。我们的run直接执行了Generator,其实是不太规范的
  return function() {
    var self = this
    var args = arguments
    return new Promise(function(resolve, reject) {
      var gen = fn.apply(self, args);

      //相当于我们的_next()
      function _next(value) {
        asyncGeneratorStep(gen, resolve, reject, _next, _throw, 'next', value);
      }
      //处理异常
      function _throw(err) {
        asyncGeneratorStep(gen, resolve, reject, _next, _throw, 'throw', err);
      }
      _next(undefined);
    });
  };
}

function asyncGeneratorStep(gen, resolve, reject, _next, _throw, key, arg) {
  try {
    var info = gen[key](arg);
    var value = info.value;
  } catch (error) {
    reject(error);
    return;
  }
  if (info.done) {
    resolve(value);
  } else {
    Promise.resolve(value).then(_next, _throw);
  }
}

使用方式:

const foo = _asyncToGenerator(function* () {
  try {
    console.log(yield Promise.resolve(1))   //1
    console.log(yield 2)                    //2
    return '3'
  } catch (error) {
    console.log(error)
  }
})

foo().then(res => {
  console.log(res)                          //3
})

有关async/await的实现,到这里就告一段落了。但是直到结尾,我们也不知道await到底是如何暂停执行的,有关await暂停执行的秘密,我们还要到Generator的实现中去寻找答案

Generator实现

我们从一个简单的Generator使用实例开始,一步步探究Generator的实现原理:

function* foo() {
  yield 'result1'
  yield 'result2'
  yield 'result3'
}
  
const gen = foo()
console.log(gen.next().value)
console.log(gen.next().value)
console.log(gen.next().value)

我们可以在babel官网上在线转化这段代码,看看ES5环境下是如何实现Generator的:

"use strict";

var _marked =
/*#__PURE__*/
regeneratorRuntime.mark(foo);

function foo() {
  return regeneratorRuntime.wrap(function foo$(_context) {
    while (1) {
      switch (_context.prev = _context.next) {
        case 0:
          _context.next = 2;
          return 'result1';

        case 2:
          _context.next = 4;
          return 'result2';

        case 4:
          _context.next = 6;
          return 'result3';

        case 6:
        case "end":
          return _context.stop();
      }
    }
  }, _marked);
}

var gen = foo();
console.log(gen.next().value);
console.log(gen.next().value);
console.log(gen.next().value);

代码咋一看不长,但如果仔细观察会发现有两个不认识的东西 —— regeneratorRuntime.markregeneratorRuntime.wrap,这两者其实是 regenerator-runtime 模块里的两个方法,regenerator-runtime 模块来自facebook的 regenerator 模块,完整代码在runtime.js,这个runtime有700多行…-_-||,因此我们不能全讲,不太重要的部分我们就简单地过一下,重点讲解暂停执行相关部分代码

个人觉得啃源码的效果不是很好,建议读者拉到末尾先看结论和简略版实现,源码作为一个补充理解

regeneratorRuntime.mark()

regeneratorRuntime.mark(foo)这个方法在第一行被调用,我们先看一下runtime里mark()方法的定义

//runtime.js里的定义稍有不同,多了一些判断,以下是编译后的代码
runtime.mark = function(genFun) {
  genFun.__proto__ = GeneratorFunctionPrototype;
  genFun.prototype = Object.create(Gp);
  return genFun;
};

这里边GeneratorFunctionPrototypeGp我们都不认识,他们被定义在runtime里,不过没关系,我们只要知道mark()方法为生成器函数(foo)绑定了一系列原型就可以了,这里就简单地过了

regeneratorRuntime.wrap()

从上面babel转化的代码我们能看到,执行foo(),其实就是执行wrap(),那么这个方法起到什么作用呢,他想包装一个什么东西呢,我们先来看看wrap方法的定义:

//runtime.js里的定义稍有不同,多了一些判断,以下是编译后的代码
function wrap(innerFn, outerFn, self) {
  var generator = Object.create(outerFn.prototype);
  var context = new Context([]);
  generator._invoke = makeInvokeMethod(innerFn, self, context);

  return generator;
}

wrap方法先是创建了一个generator,并继承outerFn.prototype;然后new了一个context对象makeInvokeMethod方法接收innerFn(对应foo$)contextthis,并把返回值挂到generator._invoke上;最后return了generator。其实wrap()相当于是给generator增加了一个_invoke方法

这段代码肯定让人产生很多疑问,outerFn.prototype是什么,Context又是什么,makeInvokeMethod又做了哪些操作。下面我们就来一一解答:

outerFn.prototype其实就是genFun.prototype

这个我们结合一下上面的代码就能知道

context可以直接理解为这样一个全局对象,用于储存各种状态和上下文:

var ContinueSentinel = {};

var context = {
  done: false,
  method: "next",
  next: 0,
  prev: 0,
  abrupt: function(type, arg) {
    var record = {};
    record.type = type;
    record.arg = arg;

    return this.complete(record);
  },
  complete: function(record, afterLoc) {
    if (record.type === "return") {
      this.rval = this.arg = record.arg;
      this.method = "return";
      this.next = "end";
    }

    return ContinueSentinel;
  },
  stop: function() {
    this.done = true;
    return this.rval;
  }
};

makeInvokeMethod的定义如下,它return了一个invoke方法,invoke用于判断当前状态和执行下一步,其实就是我们调用的next()

//以下是编译后的代码
function makeInvokeMethod(innerFn, context) {
  // 将状态置为start
  var state = "start";

  return function invoke(method, arg) {
    // 已完成
    if (state === "completed") {
      return { value: undefined, done: true };
    }
    
    context.method = method;
    context.arg = arg;

    // 执行中
    while (true) {
      state = "executing";

      var record = {
        type: "normal",
        arg: innerFn.call(self, context)    // 执行下一步,并获取状态(其实就是switch里边return的值)
      };

      if (record.type === "normal") {
        // 判断是否已经执行完成
        state = context.done ? "completed" : "yield";

        // ContinueSentinel其实是一个空对象,record.arg === {}则跳过return进入下一个循环
        // 什么时候record.arg会为空对象呢, 答案是没有后续yield语句或已经return的时候,也就是switch返回了空值的情况(跟着上面的switch走一下就知道了)
        if (record.arg === ContinueSentinel) {
          continue;
        }
        // next()的返回值
        return {
          value: record.arg,
          done: context.done
        };
      }
    }
  };
}

为什么generator._invoke实际上就是gen.next呢,因为在runtime对于next()的定义中,next()其实就return了_invoke方法

// Helper for defining the .next, .throw, and .return methods of the
// Iterator interface in terms of a single ._invoke method.
function defineIteratorMethods(prototype) {
    ["next", "throw", "return"].forEach(function(method) {
      prototype[method] = function(arg) {
        return this._invoke(method, arg);
      };
    });
}

defineIteratorMethods(Gp);

低配实现 & 调用流程分析

这么一遍源码下来,估计很多读者还是懵逼的,毕竟源码中纠集了很多概念和封装,一时半会不好完全理解,让我们跳出源码,实现一个简单的Generator,然后再回过头看源码,会得到更清晰的认识

// 生成器函数根据yield语句将代码分割为switch-case块,后续通过切换_context.prev和_context.next来分别执行各个case
function gen$(_context) {
  while (1) {
    switch (_context.prev = _context.next) {
      case 0:
        _context.next = 2;
        return 'result1';

      case 2:
        _context.next = 4;
        return 'result2';

      case 4:
        _context.next = 6;
        return 'result3';

      case 6:
      case "end":
        return _context.stop();
    }
  }
}

// 低配版context 
var context = {
  next:0,
  prev: 0,
  done: false,
  stop: function stop () {
    this.done = true
  }
}

// 低配版invoke
let gen = function() {
  return {
    next: function() {
      value = context.done ? undefined: gen$(context)
      done = context.done
      return {
        value,
        done
      }
    }
  }
} 

// 测试使用
var g = gen() 
g.next()  // {value: "result1", done: false}
g.next()  // {value: "result2", done: false}
g.next()  // {value: "result3", done: false}
g.next()  // {value: undefined, done: true}

这段代码并不难理解,我们分析一下调用流程:

  1. 我们定义的function* 生成器函数被转化为以上代码
  2. 转化后的代码分为三大块:
    • gen$(_context)由yield分割生成器函数代码而来
    • context对象用于储存函数执行上下文
    • invoke()方法定义next(),用于执行gen$(_context)来跳到下一步
  3. 当我们调用g.next(),就相当于调用invoke()方法,执行gen$(_context),进入switch语句,switch根据context的标识,执行对应的case块,return对应结果
  4. 当生成器函数运行到末尾(没有下一个yield或已经return),switch匹配不到对应代码块,就会return空值,这时g.next()返回{value: undefined, done: true}

从中我们可以看出,Generator实现的核心在于上下文的保存,函数并没有真的被挂起,每一次yield,其实都执行了一遍传入的生成器函数,只是在这个过程中间用了一个context对象储存上下文,使得每次执行生成器函数的时候,都可以从上一个执行结果开始执行,看起来就像函数被挂起了一样

总结 & 致谢

有关Promise、async/await、Generator的原理就实现到这里了,感谢大家能够跟我一起走完全程,不知不觉,我们花了近9千字来讲述有关异步编程的故事,异步编程的世界环环相扣,一开始,笔者只是出于对await挂起机制的好奇,后来,从一个 “await是如何实现暂停执行” 的小问题,引出了对异步编程的一系列思考和实现原理。三者的实现,其实也是前端异步编程一步步演化推进的过程。

成文过程中得到很多大佬的帮助,这四篇参考文章都是我阅读了很多相关文章后精选的四篇,建议大家结合阅读,大佬们写的比我好很多,另外感谢冴羽大佬在Generator机制上给予的解惑~

前端技匠:各种源码实现,你想要的这里都有
神三元:我如何实现Promise
winty:async/await 原理及执行顺序分析
冴羽:ES6 系列之 Babel 将 Generator 编译成了什么样子

最后卑微求个赞Thanks♪(・ω・)ノ

9k字 | Promise/async/Generator实现原理解析

往期文章

  1. 10行代码看尽redux实现 —— 全面剖析redux & react-redux & redux中间件设计实现 | 8k字
  2. 红黑树上红黑果,红黑树下你和我 —— 红黑树入门 | 6k字
  3. SSR从入门到放弃 —— 深入React服务端渲染原理 | 1W字?

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/14004.html

(0)
上一篇 2024-01-07 16:00
下一篇 2024-03-04 13:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信