大家好,欢迎来到IT知识分享网。
韦布尔分布,即韦伯分布(Weibull distribution),又称韦氏分布或威布尔分布,是可靠性分析和寿命检验的理论基础。威布尔分布在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。由于它可以利用概率值很容易地推断出它的分布参数,被广泛应用于各种寿命试验的数据处理。
The Weibull Distribution
Description
Density, distribution function, quantile function and random generation for the Weibull distribution with parameters shape
and scale
.
Usage
dweibull(x, shape, scale = 1, log = FALSE) pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE) rweibull(n, shape, scale = 1)
Arguments
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape, scale |
shape and scale parameters, the latter defaulting to 1. |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x], otherwise, P[X > x]. |
#### 韦布尔(Weibull)分布
# 1.韦布尔分布中抽样函数rweibull
# shape :k, k >0是形状参数(shape parameter)
n <- 100
rweibull(n, shape=0.5)
# 2.韦布尔分布概率密度函数
x <- seq(0,1,0.01)
y <- dweibull(x, shape=5)
plot(x,y)
# 3.韦布尔分布累积概率
# P[X ≤ x]
pweibull(0.8,shape=5)
# P[X > x]
pweibull(0.8,shape=5,lower.tail = FALSE)
# probabilities p are given as log(p).
pweibull(0.8,shape=5,log.p = TRUE)
# 4.分位数函数qweibull(pweibull的反函数)
# 累积概率为0.95时的x值
# x <- seq(0,2,0.05)
# plot(x,pweibull(x, shape=5))
qweibull(0.95,shape=5)
qweibull(0.995,shape=5)
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/14261.html