大家好,欢迎来到IT知识分享网。
Java类加载机制
类加载的时机
- 隐式加载 new 创建类的实例,
- 显式加载:loaderClass,forName等
- 访问类的静态变量,或者为静态变量赋值
- 调用类的静态方法
- 使用反射方式创建某个类或者接口对象的Class对象。
- 初始化某个类的子类
- 直接使用
java.exe
命令来运行某个主类
类加载的过程
我们编写的java
文件都是保存着业务逻辑代码。java
编译器将 .java
文件编译成扩展名为 .class
的文件。.class 文件中保存着java转换后,虚拟机将要执行的指令。当需要某个类的时候,java虚拟机会加载 .class 文件,并创建对应的class对象,将class文件加载到虚拟机的内存,这个过程被称为类的加载。
加载
类加载过程的一个阶段,ClassLoader通过一个类的完全限定名查找此类字节码文件,并利用字节码文件创建一个class对象。
验证
目的在于确保class文件的字节流中包含信息符合当前虚拟机要求,不会危害虚拟机自身的安全,主要包括四种验证:文件格式的验证,元数据的验证,字节码验证,符号引用验证。
准备
为类变量(static修饰的字段变量)分配内存并且设置该类变量的初始值,(如static int i = 5 这里只是将 i 赋值为0,在初始化的阶段再把 i 赋值为5),这里不包含final修饰的static ,因为final在编译的时候就已经分配了。这里不会为实例变量分配初始化,类变量会分配在方法区中,实例变量会随着对象分配到Java堆中。
解析
这里主要的任务是把常量池中的符号引用替换成直接引用
初始化
这里是类记载的最后阶段,如果该类具有父类就进行对父类进行初始化,执行其静态初始化器(静态代码块)和静态初始化成员变量。(前面已经对static 初始化了默认值,这里我们对它进行赋值,成员变量也将被初始化)
类记载器的任务是根据类的全限定名来读取此类的二进制字节流到 JVM 中,然后转换成一个与目标类对象的java.lang.Class 对象的实例,在java 虚拟机提供三种类加载器,引导类加载器,扩展类加载器,系统类加载器。
forName和loaderClass区别
- Class.forName()得到的class是已经初始化完成的。
- Classloader.loaderClass得到的class是还没有链接(验证,准备,解析三个过程被称为链接)的。
双亲委派
双亲委派模式要求除了顶层的启动类加载器之外,其余的类加载器都应该有自己的父类加载器,但是在双亲委派模式中父子关系采取的并不是继承的关系,而是采用组合关系来复用父类加载器的相关代码。
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException {
// 增加同步锁,防止多个线程加载同一类
synchronized (getClassLoadingLock(name)) {
// First, check if the class has already been loaded
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {
c = parent.loadClass(name, false);
} else {
// ExtClassLoader没有继承BootStrapClassLoader
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
if (c == null) {
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
// AppClassLoader去我们项目中查找是否有这个文件,如有加载进来
// 没有就到用户自定义ClassLoader中加载。如果没有就抛出异常
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
resolveClass(c);
}
return c;
}
}
工作原理
如果一个类收到了类加载的请求,它并不会自己先去加载,而是把这个请求委托给父类加载器去执行,如果父类加载器还存在父类加载器,则进一步向上委托,依次递归,请求最后到达顶层的启动类加载器,如果弗雷能够完成类的加载任务,就会成功返回,倘若父类加载器无法完成任务,子类加载器才会尝试自己去加载,这就是双亲委派模式。就是每个儿子都很懒,遇到类加载的活都给它爸爸干,直到爸爸说我也做不来的时候,儿子才会想办法自己去加载。
优势
采用双亲委派模式的好处就是Java类随着它的类加载器一起具备一种带有优先级的层次关系,通过这种层级关系可以避免类的重复加载,当父亲已经加载了该类的时候,就没有必要子类加载器(ClassLoader)再加载一次。其次是考虑到安全因素,Java核心API中定义类型不会被随意替换,假设通过网路传递一个名为java.lang.Integer的类,通过双亲委派的的模式传递到启动类加载器,而启动类加载器在核心Java API发现这个名字类,发现该类已经被加载,并不会重新加载网络传递过来的java.lang.Integer.而之际返回已经加载过的Integer.class,这样便可以防止核心API库被随意篡改。可能你会想,如果我们在calsspath路径下自定义一个名为java.lang.SingInteger?该类并不存在java.lang中,经过双亲委托模式,传递到启动类加载器中,由于父类加载器路径下并没有该类,所以不会加载,将反向委托给子类加载器,最终会通过系统类加载器加载该类,但是这样做是不允许的,因为java.lang是核心的API包,需要访问权限,强制加载将会报出如下异常。
java.lang.SecurityException:Prohibited package name: java.lang
类与类加载器
- 在JVM中标识两个Class对象,是否是同一个对象存在的两个必要条件
- 类的完整类名必须一致,包括包名。
- 加载这个ClassLoader(指ClassLoader实例对象)必须相同。
双亲委派模式的破坏者:线程上下文类加载器
在Java应用中存在着很多服务提供者接口(Service Provider Interface,SPI),这些接口允许第三方为它们提供实现,如常见的 SPI 有 JDBC、JNDI等,这些 SPI 的接口属于 Java 核心库,一般存在rt.jar包中,由Bootstrap类加载器加载,而 SPI 的第三方实现代码则是作为Java应用所依赖的 jar 包被存放在classpath路径下,由于SPI接口中的代码经常需要加载具体的第三方实现类并调用其相关方法,但SPI的核心接口类是由引导类加载器来加载的,而Bootstrap类加载器无法直接加载SPI的实现类,同时由于双亲委派模式的存在,Bootstrap类加载器也无法反向委托AppClassLoader加载器SPI的实现类。在这种情况下,我们就需要一种特殊的类加载器来加载第三方的类库,而线程上下文类加载器就是很好的选择。
线程上下文类加载器(contextClassLoader)是从 JDK 1.2 开始引入的,我们可以通过java.lang.Thread类中的getContextClassLoader()和 setContextClassLoader(ClassLoader cl)方法来获取和设置线程的上下文类加载器。如果没有手动设置上下文类加载器,线程将继承其父线程的上下文类加载器,初始线程的上下文类加载器是系统类加载器(AppClassLoader),在线程中运行的代码可以通过此类加载器来加载类和资源,如下图所示,以jdbc.jar加载为例
对象的创建过程
当虚拟机遇到一个new
的指令的时候,首先去检查这个指令是否能在常量池
中定位到一个类的符号引用,并检查这个符号引用代表的类是否已经被加载,解析和初始化过。如果没有则执行相应初始化的过程。在类加载检查通过后,接下来虚拟机将为新生对象分配内存,对象所需要的内存的大小在类加载完成后便可以完成确定
。内存分配完成以后,虚拟机需要将分配的内存空间都初始化为零值
,保证了对象的实例字段在Java代码中可以不赋予初值就直接使用,程序能访问到这些字段的数据类型对应的零值。再接下来对象需要进行必要的设置,这个对象是哪个类的实例,如何才能找到这个类的元数据信息,如何找到对象的哈希码,对象的GC分带年龄。
- Java堆如果是规整的采取:指针碰撞,
- Java堆如果不是规整的话:空闲列表,在内存中直接分配一个足够大的内存空间划分给对象。
- 对象创建是非常平凡的,在多线程的程序中会产生线程安全的问题,所以解决这个问题有两种方式
- 使用CSA配上失败重试的方式来保证原子性
- 内存分配动作按照线程划分在不同的空间之中进行,即每个线程在java堆中预先分配一个小块的内存成为本地分配缓冲,TLAB,哪个线程需要分配内存就在哪个线程的TALB上分配,只有在TALB用完之后才会重新分配新的TALB的时候才会同步锁定。
对象的内存布局
对象的内存布局一般分为三个部分:对象头,示例数据,对齐填充
对象头中存放着对象自身的运行时数据,如哈希码,GC分带年龄,锁状态标志,偏向线程ID,线程持有的锁。
对象头另外一部分还有类型指针
,对象指向它类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。如果对象是一个java数组,那在对象头中还必须用一块用于记录数组长度的数据。因为虚拟机可以通过普通java对象的元数据信息确定java对象的大小。
对象的访问定位方式
句柄和直接指针
- 如果使用句柄的话,要在java堆中开辟一个句柄池,用来存放句柄地址,句柄地址中包含对象实例数据(堆)和类型数据(方法区)各自的地址信息。
- 是用句柄的好处就是引用中存储的是稳定的句柄地址,当被移动时只会修改句柄中的实例数据指针,而引用地址不会被改变。
- 使用直接指针访问方式的最大好处就是速度更快,它节省了一次访问指针定位的时间开销,引用直接指向存放实例数据的堆内存,在该内存中存放着指向方法区的类型数据地址。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/14742.html