大家好,欢迎来到IT知识分享网。
1.sin(2α)=2sin(α)cos(α)
已知单位圆中有圆周三角形△ABC,圆周角为α,圆心为点O
∴ 圆心角 = 2 ∗ 圆周角 ∴圆心角=2*圆周角 ∴圆心角=2∗圆周角
∵ ∠ A O C = α , A B = 2 c o s ( α ) , A C = 2 s i n ( α ) ∵∠AOC=α,AB=2cos(α),AC=2sin(α) ∵∠AOC=α,AB=2cos(α),AC=2sin(α)
做 A P ⊥ B C 于点 P 做AP⊥BC于点P 做AP⊥BC于点P
∴ △ A B P 与△ A P O 共用边 A P ∴△ABP与△APO共用边AP ∴△ABP与△APO共用边AP
∵ s i n ( α ) ∗ A B = s i n ( 2 α ) ∵sin(α)*AB=sin(2α) ∵sin(α)∗AB=sin(2α)
∵ s i n ( 2 α ) = 2 s i n ( α ) c o s ( α ) ∵sin(2α)=2sin(α)cos(α) ∵sin(2α)=2sin(α)cos(α)
2. c o s ( 2 α ) = c o s ( α ) 2 − s i n ( α ) 2 cos(2α)=cos(α)^2-sin(α)^2 cos(2α)=cos(α)2−sin(α)2
∴ 圆心角 = 2 ∗ 圆周角 ∴圆心角=2*圆周角 ∴圆心角=2∗圆周角
∵ ∠ A O C = α , A B = 2 c o s ( α ) , A C = 2 s i n ( α ) ∵∠AOC=α,AB=2cos(α),AC=2sin(α) ∵∠AOC=α,AB=2cos(α),AC=2sin(α)
做 A P ⊥ B C 于点 P 做AP⊥BC于点P 做AP⊥BC于点P
∵ ∠ P A C + ∠ A C P = ∠ A B C + ∠ A C P ∵∠PAC+∠ACP=∠ABC+∠ACP ∵∠PAC+∠ACP=∠ABC+∠ACP
∵ ∠ P A C = α ∵∠PAC=α ∵∠PAC=α
∵ O P = 1 − 2 s i n ( α ) s i n ( α ) = c o s ( 2 α ) ∵OP=1-2sin(α)sin(α)=cos(2α) ∵OP=1−2sin(α)sin(α)=cos(2α)
∵ c o s ( 2 α ) = 1 − 2 s i n ( α ) 2 ∵cos(2α)=1-2sin(α)^2 ∵cos(2α)=1−2sin(α)2
∵ c o s ( 2 α ) = c o s ( α ) 2 − s i n ( α ) 2 ∵cos(2α)=cos(α)^2-sin(α)^2 ∵cos(2α)=cos(α)2−sin(α)2
3. t a n ( 2 α ) = 2 t a n ( α ) 1 − t a n ( α ) 2 tan(2α)=\frac{2tan(α)}{1-tan(α)^2} tan(2α)=1−tan(α)22tan(α)
由公式1,2推tan(2α)
t a n ( 2 α ) = s i n ( 2 α ) c o s ( 2 α ) tan(2α)=\frac{sin(2α)}{cos(2α)} tan(2α)=cos(2α)sin(2α)
= 2 s i n ( α ) c o s ( α ) c o s ( α ) 2 − s i n ( α ) 2 =\frac{2sin(α)cos(α)}{cos(α)^2-sin(α)^2} =cos(α)2−sin(α)22sin(α)cos(α)
= 2 t a n ( α ) 1 − t a n ( α ) 2 =\frac{2tan(α)}{1-tan(α)^2} =1−tan(α)22tan(α)
4. c o t ( 2 α ) = c o t ( α ) 2 − 1 2 c o t ( α ) cot(2α)=\frac{cot(α)^2-1}{2cot(α)} cot(2α)=2cot(α)cot(α)2−1
由公式1,2推cot(2α)
c o t ( 2 α ) = c o s ( 2 α ) s i n ( 2 α ) cot(2α)=\frac{cos(2α)}{sin(2α)} cot(2α)=sin(2α)cos(2α)
= c o s ( α ) 2 − s i n ( α ) 2 2 s i n ( α ) c o s ( α ) =\frac{cos(α)^2-sin(α)^2}{2sin(α)cos(α)} =2sin(α)cos(α)cos(α)2−sin(α)2
= c o t ( α ) 2 − 1 2 c o t ( α ) =\frac{cot(α)^2-1}{2cot(α)} =2cot(α)cot(α)2−1
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/157786.html