【算法笔记】树形DP算法总结&详解

【算法笔记】树形DP算法总结&详解树形DP,又称树状DP,即在树上进行的DP,是DP(动态规划)算法中较为复杂的一种。本文将以例题+算法的形式,详细讲解这种算法。

大家好,欢迎来到IT知识分享网。

0. 定义

树形DP,又称树状DP,即在树上进行的DP,是DP(动态规划)算法中较为复杂的一种。

1. 基础

f [ u ] =   f[u]=~ f[u]= 与树上顶点 u u u有关的某些数据,并按照拓扑序(从叶子节点向上到根节点的顺序)进行 DP \text{DP} DP,确保在更新一个顶点时其子节点的dp值已经被更新好,以更新当前节点的 DP \text{DP} DP值。为方便计算,一般写成dfs的形式,如下:

void dfs(int v) { 
    // 遍历节点v
	dp[v] = ...; // 初始化
	for(int u: G[v]) { 
    // 遍历v的所有子节点
		dfs(u);
		update(u, v); // 用子节点的dp值对当前节点的dp值进行更新
	}
}

下面来看一道简单的例题:

【例1.1】子树大小

给定一棵有 N N N个结点的树,根结点为结点 1 1 1。对于 i = 1 , 2 , … , N i=1,2,\dots,N i=1,2,,N,求以结点 i i i为根的子树大小(即子树上结点的个数,包括根结点)。

本题明显可以使用树形DP的方法,令 f [ v ] =   f[v]=~ f[v]=  v v v为根的子树大小,则易得
f [ v ] = 1 + ∑ i = 1 deg v G [ v ] [ i ] f[v]=1+\sum_{i=1}^{\text{deg}_v} G[v][i] f[v]=1+i=1degvG[v][i]
即:一个结点的子树大小   = 1 ~=1  =1(根节点) +   +~ + 每个子树的大小。

沿用刚才的模板,可得:

#include <cstdio>
#include <vector>
#define maxn 100
using namespace std;

vector<int> G[maxn]; // 邻接表
int sz[maxn]; // dp数组,sz[v] = 子树v的大小

void dfs(int v)
{ 
   
	sz[v] = 1; // 初始化,最初大小为1,后面累加
	for(int u: G[v]) // 遍历子结点
	{ 
   
		dfs(u); // 先对子结点进行dfs
		sz[v] += sz[u]; // 更新当前子树的大小
	}
}

int main()
{ 
   
	int n;
	scanf("%d", &n); // 结点个数
	for(int i=1; i<n; i++) // N-1条边
	{ 
   
		int u, v;
		scanf("%d%d", &u, &v); // 读入一条边
		G[u].push_back(v); // 存入邻接表
	}
	dfs(1);
	for(int i=1; i<=n; i++)
		printf("%d\n", sz[i]);
	return 0;
}

下面来看一道稍微复杂一点的题:

【例1.2】洛谷P1352 没有上司的舞会

本题即树的最大独立集问题。

N N N名职员,编号为 1 … N 1\dots N 1N,他们的关系就像一棵以老板为根的树,父节点就是子节点的直接上司。每个职员有一个快乐指数 r i r_i ri,现在要召开一场舞会,使得没有职员和直接上司一起参会。主办方希望邀请一部分职员参会,使得所有参会职员的快乐指数总和最大,求这个最大值。

f ( v ) f(v) f(v)表示以 v v v为根的子树中,选择 v v v的最优解, g ( v ) g(v) g(v)表示以 v v v为根的子树中,不选 v v v的最优解。

则对于每个状态,都存在两种决策(其中 u u u代表 v v v的儿子):

  • 选择 v v v时,可选也可不选 u u u,此时有 g ( v ) = ∑ max ⁡ { f ( u ) , g ( u ) } g(v)=\sum\max\{f(u),g(u)\} g(v)=max{
    f(u),g(u)}
  • 不选 v v v时,一定不能选 u u u,此时有 f ( v ) = r i + ∑ g ( u ) f(v)=r_i+\sum g(u) f(v)=ri+g(u)

时间复杂度为 O ( N ) \mathcal O(N) O(N)
注意本题需要寻找根节点,没有上司的结点即为根节点,读入时用数组标记即可。

#include <cstdio>
#include <vector>
#define maxn 6005
using namespace std;

inline int max(int x, int y) { 
    return x > y? x: y; }

vector<int> G[maxn]; // 邻接表
bool bad[maxn]; // 根结点标记
int f[maxn], g[maxn]; // 数据存储

void dfs(int v) // 遍历结点v
{ 
   
	// 读入时已初始化,这里可省略
	for(int u: G[v]) // 遍历子结点
	{ 
   
		dfs(u); // 先对子结点进行dfs
		// 更新当前dp状态
		f[v] += g[u]; // 选择v,不能选u
		g[v] += max(f[u], g[u]); // 不选v,u可选可不选
	}
}

int main()
{ 
   
	int n;
	scanf("%d", &n); // 结点个数
	for(int i=0; i<n; i++)
		scanf("%d", f + i); // 相当于提前初始化好f[i]=r[i]
	for(int i=1; i<n; i++) // N-1条边
	{ 
   
		int u, v;
		scanf("%d%d", &u, &v); // 读入一条边
		G[--v].push_back(--u); // 0-index,存入邻接表
		bad[u] = true; // 标记不可能是根结点
	}
	int root = -1; // 根结点变量
	for(int i=0; i<n; i++)
		if(!bad[i]) // 找到根结点
		{ 
   
			root = i; // 记录根结点
			break;
		}
	dfs(root); // 开始进行树形DP
	printf("%d\n", max(f[root], g[root])); // 根结点也有两种选择
	return 0;
}

习题

2. 树上背包

在基本算法之上,树形dp还可以用于树上背包问题。来看一道例题:

【例2.1】洛谷P2014 / AcWing 286 选课

N N N门课,第 i i i门课的学分是 s i s_i si每门课有不超过一门先修课,需要上了先修课才能上这门课。现要选 M M M门课,使得学分总和最大。

每门课最多只有一门先修课,这符合树结构的特点,与有根树中一个点最多只有一个父亲结点的特点类似。因此,我们根据数据构造一棵树,课程的先修课为这门课的父结点。又由于给定的输入是一个森林(多棵树组成的不一定连通的图),不是一棵完整的树,因此我们添加虚拟根结点 0 0 0 s 0 = 0 s_0=0 s0=0),将没有先修课的结点全部连到它下面,并从这里开始dfs。注意此时必须选中 0 0 0号结点(它是所有课程的直接或间接先修课),所以操作前先将 M M M加上 1 1 1

格式问题解决,下面考虑如何 DP \text{DP} DP
f [ i ] [ j ] f[i][j] f[i][j]表示当前在结点 i i i、且已经选了 j j j门课时的最大学分数量,则答案为 f [ 0 ] [ M + 1 ] f[0][M+1] f[0][M+1]。状态转移方程等详见代码。时间复杂度为 O ( N M ) \mathcal O(NM) O(NM),有兴趣的可以自己尝试证明。

#include <cstdio>
#include <vector>
#include <algorithm>
#define maxn 305
using namespace std;

// dp算法中常用的模板,等效于x=max(x,y)
inline void setmax(int& x, int y)
{ 
   
	if(x < y) x = y;
}

vector<int> G[maxn]; // 邻接表
int n, m, f[maxn][maxn];

int dfs(int u) // 遍历结点u,返回值为其子树大小
{ 
   
	int tot = 1; // 记录子树大小,初始为1
	for(int v: G[u]) // 遍历u的所有子结点
	{ 
   
		int sz = dfs(v); // 对当前子结点进行搜索
		// 状态转移,注意i倒序,防止串连转移现象
		for(int i=min(tot, m); i>0; i--) // 子树大小优化可降低算法复杂度
			for(int j=1, lim=min(sz, m-i); j<=lim; j++)
				setmax(f[u][i + j], f[u][i] + f[v][j]); // 更新状态
		tot += sz; // 加到当前子树下
	}
	return tot; // 返回子树大小
}

int main()
{ 
   
	scanf("%d%d", &n, &m);
	for(int i=1; i<=n; i++)
	{ 
   
		int a;
		scanf("%d%d", &a, f[i] + 1); // 初始化f[i][1]=s[i]
		G[a].push_back(i);
	}
	m ++; // 别忘了这一句
	dfs(0);
	printf("%d\n", f[0][m]);
	return 0;
}

习题

3. 换根 DP

换根DP,即为不知道根结点时使用的一种树形DP,时间复杂度一般为 O ( N ) \mathcal O(N) O(N)

【例3.1】洛谷 P3478 [POI2008] STA-Station

给定一个 n n n个点的树,请求出一个结点,使得以这个结点为根时,所有结点的深度之和最大。

先考虑最简单粗暴的方法,即为枚举所有结点,代码如下:

#include <cstdio>
#include <vector>
#define maxn 1000005
using namespace std;

vector<int> G[maxn];

int dfs(int v, int d, int par)
{ 
   
	int s = d;
	for(int u: G[v])
		if(u != par)
			s += dfs(u, d + 1, v);
	return s;
}

int main()
{ 
   
	int n;
	scanf("%d", &n);
	for(int t=n; --t; )
	{ 
   
		int u, v;
		scanf("%d%d", &u, &v);
		G[--u].push_back(--v);
		G[v].push_back(u);
	}
	int ans = 0, maxDepth = dfs(0, 0, -1);
	for(int root=1; root<n; root++)
	{ 
   
		int d = dfs(root, 0, -1);
		if(d > maxDepth) ans = root, maxDepth = d;
	}
	printf("%d\n", ++ans);
	return 0;
}

很明显,这种做法时间复杂度为 O ( n 2 ) \mathcal O(n^2) O(n2),又因为 n ≤ 1 0 6 n\le 10^6 n106,所以无法得全分,评测结果如下:
评测结果
好家伙,居然还有50分,本以为最多30…

下面来考虑换根DP的方法。不妨令 u u u为当前结点, v v v为其子结点。先预处理出每个结点的子树大小 s [ u ] = 1 + ∑ s [ v ] s[u]=1+\sum s[v] s[u]=1+s[v]和以 1 1 1为根结点时所有结点的深度( depth i \text{depth}_i depthi),此时第一遍DFS即为预处理。

f u f_u fu表示以 u u u为根时,所有结点的总深度和,则 f 1 = ∑ depth i f_1=\sum\text{depth}_i f1=depthi
考虑 f u → f v f_u\to f_v fufv的转移,即“根结点从 u u u变成 v v v时所有结点深度和的变化”,则有:

  • 所有在 v v v的子树上的结点深度全部 − 1 -1 1,则总深度和减少 s v s_v sv
  • 所有不在 v v v的子树上的结点深度都 + 1 +1 +1,则总深度和增加 n − s v n-s_v nsv

此时,可得 f v = f u − s v + n − s v = f u + n − 2 s v f_v=f_u-s_v+n-s_v=f_u+n-2s_v fv=fusv+nsv=fu+n2sv。注意数据类型,使用long long

#include <cstdio>
#include <vector>
#define maxn 1000005
using namespace std;

using LL = long long;

vector<int> G[maxn];
LL sz[maxn], f[maxn];
int n, ans;

LL dfs1(int v, int d, int par)
{ 
   
	sz[v] = 1;
	LL s = d;
	for(int u: G[v])
		if(u != par)
			s += dfs1(u, d + 1, v), sz[v] += sz[u];
	return s;
}

void dfs2(int v, int par)
{ 
   
	if(f[v] > f[ans]) ans = v;
	for(int u: G[v])
		if(u != par)
		{ 
   
			f[u] = f[v] + n - (sz[u] << 1LL);
			dfs2(u, v);
		}
}

int main()
{ 
   
	scanf("%d", &n);
	for(int t=n; --t; )
	{ 
   
		int u, v;
		scanf("%d%d", &u, &v);
		G[--u].push_back(--v);
		G[v].push_back(u);
	}
	f[0] = dfs1(0, 0, -1);
	dfs2(0, -1);
	printf("%d\n", ++ans);
	return 0;
}

AC

习题

4. 后记

好像这玩意也并不是开头所说的那么难…… 记得给个三连哦!

参考文献:

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/15951.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信