同时不满足极值三个充分条件的点,一定不是极值点吗?

同时不满足极值三个充分条件的点,一定不是极值点吗?如果函数在一个点上 同时不能满足极值的三个充分条件 那么这个点还有可能是极值点吗 换句话说 函数是否存在同时不满足极值三个充分条件的极值点 看完下面这道关于分段函数的极值问题 您就会明确这个问题了

大家好,欢迎来到IT知识分享网。

如果函数在一个点上,同时不能满足极值的三个充分条件,那么这个点还有可能是极值点吗?换句话说,函数是否存在同时不满足极值三个充分条件的极值点。看完下面这道关于分段函数的极值问题,您就会明确这个问题了。

同时不满足极值三个充分条件的点,一定不是极值点吗?

设{当x不等于0时,f(x)=x^4sin^2(1/x);当x=0时,f(x)=0}.

(1)证明x=0是函数f的极小值点;

(2)说明在f的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.

分析:(1)这个分段函数在x=0连续,但却不可导,即x=0是函数的不可导点。如果您要用极值的第一充分条件来判定它是不是极值点的话,那是行不通的。不信您可以自己动手试一试。这时候我们可以用极值的定义来判断。即在x=0的某邻域上,所有的函数值都不小于f(0),就称x=0是函数的极小值点,反之则是极大值点。事实上,这道题所取的这个邻域甚至可以是全域R。

(2)之所以(1)中不能运用极值的第一充分条件来判定x=0是否函数的极值点,就是因为函数在这个点上,并不满足第一充分条件。想要证明这一点,仍需对函数求导。然后证明函数在x=0的所有单侧(左侧或右侧,未必要左侧和右侧同时满足)邻域内,导函数值总是存在变号的情况,就可以了。即在任一左侧邻域内,或任一右侧邻域内,肯定同时存在负导数和正导数。

证:(1)∵对任意x≠0,有f(x)=x^4sin^2(1/x)≥0,∴x=0是f的极小值点.

同时不满足极值三个充分条件的点,一定不是极值点吗?

(2){当x不等于0时,f'(x)=x^2(4xsin^2(1/x)-sin(2/x));当x=0时,f'(0)};

【导函数仍是一个分段函数。这个导函数也是连续但在x=0不可导的,下面补充x不等于0时的求导过程:f'(x)=4x^3sin^2(1/x)-2x^4cos(1/x)sin(1/x)/x^2

=4x^3sin^2(1/x)-x^2sin(2/x)=x^2(4xsin^2(1/x)-sin(2/x)

令xn=(2nπ+π/4)^(-1), yn=(2nπ+π/2)^(-1), (n=1,2,…),【高等数学利用三角函数的周期性,取无穷大或无穷小量,以达到证明极小区间上的条件,是非常常见的方法】

则xn, yn>0且lim(x->无穷大)xn=lim(x->无穷大)yn=0,【说明xn, yn做自变量时,都是x=0任意右邻域内可以取得的点】

又f’(xn)=(2nπ+π/4)^(-2)·[2(2nπ+π/4)^(-1)-1]<0,

f’(yn)=(2nπ+π/2)^(-2)·[4(2nπ+π/2)^(-1)-0]=4(2nπ+π/2)^(-3)>0,

即f’在任一U+⁰(0,δ)内变号,∴f在x=0处不满足第一充分条件.

又f”(0)=0,∴f在x=0处不满足第二充分条件.

甚至f^(n)(0)=0,∴f在x=0处不满足第三充分条件.

因此,可以发现,就算是一个点同时不能满足极值的三个充分条件,它也有可能是极值点。所以极值三个充分条件的逻辑或,并不是极值的必要条件.

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/166991.html

(0)
上一篇 2025-01-10 11:05
下一篇 2025-01-10 11:10

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信