变分自编码器 pytorch实现

变分自编码器 pytorch实现使用变分自编码器生成图像简介引入库设备配置在当前目录,创建不存在的目录ave_samples定义一些超参数下载MNIST训练集,这里因已下载,故download=False数据加载定义AVE模型开始训练模型简介使用minst手写数字数据集训练变分自编码器,使之能够在编码解码后能够自动生成手写数字具体原理图如下引入库importosimporttorchimporttorch.nnasnnimporttorch.nn.functionalasFimporttorchvis

大家好,欢迎来到IT知识分享网。

简介

使用minst手写数字数据集训练变分自编码器,使之能够在编码解码后能够自动生成手写数字
具体原理图如下

变分自编码器原理图

引入库

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image
import mpimg
import cv2
import matplotlib.pyplot as plt

设备配置

torch.cuda.set_device(0) # 这句用来设置pytorch在哪块GPU上运行,这里假设使用序号为1的这块GPU.
device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

在当前目录,创建不存在的目录ave_samples

sample_dir = ‘ave_samples’
if not os.path.exists(sample_dir):
os.makedirs(sample_dir)

定义一些超参数

image_size = 784
h_dim = 400
z_dim = 20
num_epochs = 200
batch_size = 128
learning_rate = 0.001

下载MNIST训练集,这里因已下载,故download=False

dataset = torchvision.datasets.MNIST(root=‘data’,
train=True,
transform=transforms.ToTensor(),
download=True)

数据加载

data_loader = torch.utils.data.DataLoader(dataset=dataset,
batch_size=batch_size,
shuffle=True)

定义AVE模型

class VAE(nn.Module):
def init(self, image_size=784, h_dim=400, z_dim=20):
super(VAE, self).init()
self.fc1 = nn.Linear(image_size, h_dim)
self.fc2 = nn.Linear(h_dim, z_dim)
self.fc3 = nn.Linear(h_dim, z_dim)
self.fc4 = nn.Linear(z_dim, h_dim)
self.fc5 = nn.Linear(h_dim, image_size)

def encode(self, x):
    h = F.relu(self.fc1(x))
    return self.fc2(h), self.fc3(h)

def reparameterize(self, mu, log_var):
    std = torch.exp(log_var / 2)
    eps = torch.randn_like(std)
    return mu + eps * std

def decode(self, z):
    h = F.relu(self.fc4(z))
    return F.sigmoid(self.fc5(h))

def forward(self, x):
    mu, log_var = self.encode(x)
    z = self.reparameterize(mu, log_var)
    x_reconst = self.decode(z)
    return x_reconst, mu, log_var

model = VAE().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

开始训练模型

for epoch in range(num_epochs):
model.train()
for i, (x, _) in enumerate(data_loader):
# 前向传播
model.zero_grad()
x = x.to(device).view(-1, image_size)
x_reconst, mu, log_var = model(x)

    # Compute reconstruction loss and kl divergence
    # For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43
    reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
    kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())

    # 反向传播及优化器
    loss = reconst_loss + kl_div
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (i + 1) % 100 == 0:
        print("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}"
              .format(epoch + 1, num_epochs, i + 1, len(data_loader), reconst_loss.item(), kl_div.item()))

with torch.no_grad():
    # 保存采样图像,即潜在向量Z通过解码器生成的新图像
    z = torch.randn(batch_size, z_dim).to(device)
    out = model.decode(z).view(-1, 1, 28, 28)
    save_image(out, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch + 1)))

    # 保存重构图像,即原图像通过解码器生成的图像
    out, _, _ = model(x)
    x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)
    save_image(x_concat, os.path.join(sample_dir, 'reconst-{}.png'.format(epoch + 1)))

reconsPath = ‘./ave_samples/reconst-30.png’
Image = cv2.imread(reconsPath)
plt.imshow(Image) # 显示图片
plt.axis(‘off’) # 不显示坐标轴
plt.show()
genPath = ‘./ave_samples/sampled-30.png’
Image = cv2.imread(genPath)
plt.imshow(Image) # 显示图片
plt.axis(‘off’) # 不显示坐标轴
plt.show()`
[4]: http://adrai.github.io/flowchart.js/

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/24045.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信