大家好,欢迎来到IT知识分享网。
高等代数的教科书里面讲到使用Ferrari(费拉里)解法求解四次方程时,从三次方程求得u的三个根,如果依次代入分解后的两个二次方程的系数,最后求的四次方程的解,如果对每一个u四次方程都有4个解,那么是不是最后有 3 ∗ 4 = 12 3*4=12 3∗4=12个解呢?很多教材只是简单的讲到对每一个u四次方程的解都是一样(当然根据代数基本定理可知仅有4个根)。就这么简单一句要秒杀多少脑细胞。直接证明有点难,反正作者本人是没能直接证明出来。现在介绍欧拉的方法解四次方程,从另一个角度能看到为什么对于每一个u求解出来的四次方程的根相同。每一个一元四次方程变量代换x=y-b/4都可以消去三次项变成为下式
(1) x 4 + p x 2 + q x + r = ( x 2 + s x + t ) ( x 2 + u x + v ) x^4 + px^2 + qx + r=(x^2+sx+t)(x^2+ux+v)\tag{1} x4+px2+qx+r=(x2+sx+t)(x2+ux+v)(1)
根据(1)式求待定的系数得到下面的方程组
(2) s = − u p = t − u 2 + v q = u ( v − t ) r = t v \begin{aligned} s&=-u\\ p&=t-u^2+v\\ q&=u(v-t)\\ r&=tv \tag{2} \end{aligned} spqr=−u=t−u2+v=u(v−t)=tv(2)
整理方程组,将u,t,v看作是变量则根据三元一次方程组可以求得下面的关系
(3) s = − u t = ( p + u 2 − q u ) 2 v = ( p + u 2 + q u ) 2 \begin{aligned} s&=-u\\ t&=\frac{(p+u^2-\frac{q}{u})}{2}\\ v&=\frac{(p+u^2+\frac{q}{u})}{2}\tag{3} \end{aligned} stv=−u=2(p+u2−uq)=2(p+u2+uq)(3)
且由于 u 2 ( p + u 2 ) 2 − q 2 = 4 u 2 r u^2(p+u^2)^2-q^2=4u^2r u2(p+u2)2−q2=4u2r若设 U = u 2 U=u^2 U=u2则U满足下面的三次多项式
(4) U 3 + 2 p U 2 + ( p 2 − 4 r ) U − q 2 = 0 U^3+2pU^2+(p^2-4r)U-q^2=0\tag{4} U3+2pU2+(p2−4r)U−q2=0(4)
回过头来看等式(1)如果设 r 1 r_1 r1与 r 2 r_2 r2是方程 x 2 + s x + t = 0 x^2+sx+t=0 x2+sx+t=0的根, r 3 r_3 r3和 r 4 r_4 r4是方程 x 2 + u x + v = 0 x^2+ux+v=0 x2+ux+v=0的两个根。显然有下面的等式成立
(5) r 1 + r 2 + r 3 + r 4 = 0 r_1+r_2+r_3+r_4=0\tag{5} r1+r2+r3+r4=0(5)
且因为 − ( r 1 + r 2 ) ( r 3 + r 4 ) = u 2 -(r_1+r_2)(r_3+r_4)=u^2 −(r1+r2)(r3+r4)=u2所以 − ( r 1 + r 2 ) ( r 3 + r 4 ) -(r_1+r_2)(r_3+r_4) −(r1+r2)(r3+r4)也一定是方程(4)的解。那方程(4)的另外两个根会是什么呢?普通人思考到这里时也许就戛然而止了,但是欧拉却继续发现两外两个根是 − ( r 1 + r 3 ) ( r 2 + r 4 ) -(r_1+r_3)(r_2+r_4) −(r1+r3)(r2+r4)与 − ( r 1 + r 4 ) ( r 2 + r 3 ) -(r_1+r_4)(r_2+r_3) −(r1+r4)(r2+r3)若令
(*) − ( r 1 + r 2 ) ( r 3 + r 4 ) = ( r 1 + r 2 ) 2 = α − ( r 1 + r 3 ) ( r 2 + r 4 ) = ( r 1 + r 3 ) 2 = β − ( r 1 + r 4 ) ( r 2 + r 3 ) = ( r 1 + r 4 ) 2 = γ 根据韦达定理 r 1 + r 2 = − u , r 3 + r 4 = u \begin{aligned} -(r_1+r_2)(r_3+r_4) &=(r_1+r_2)^2=\alpha\\ -(r_1+r_3)(r_2+r_4) &=(r_1+r_3)^2= \beta\\ -(r_1+r_4)(r_2+r_3) &= (r_1+r_4)^2=\gamma\tag{*}\text{根据韦达定理$r_1+r_2=-u,r_3+r_4=u$} \end{aligned} −(r1+r2)(r3+r4)−(r1+r3)(r2+r4)−(r1+r4)(r2+r3)=(r1+r2)2=α=(r1+r3)2=β=(r1+r4)2=γ根据韦达定理r1+r2=−u,r3+r4=u(*)
要证明它们是方程(4)的三个根那么等同于必须满足韦达定理的条件,即满足
(6) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] + [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] + [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α + β + γ = − 2 p [-(r_1+r_2)(r_3+r_4)]+[-(r_1+r_3)(r_2+r_4)] +[-(r_1+r_4)(r_2+r_3)]=\alpha+ \beta+\gamma=-2p\tag{6} [−(r1+r2)(r3+r4)]+[−(r1+r3)(r2+r4)]+[−(r1+r4)(r2+r3)]=α+β+γ=−2p(6)
(7) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] + [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] + [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α β + α γ + β γ = p 2 − 4 r [-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)]+[-(r_1+r_2)(r_3+r_4)][-(r_1+r_4)(r_2+r_3)]\\ +[-(r_1+r_3)(r_2+r_4) ][-(r_1+r_4)(r_2+r_3)]=\alpha\beta+\alpha\gamma+\beta\gamma=p^2-4r\tag{7} [−(r1+r2)(r3+r4)][−(r1+r3)(r2+r4)]+[−(r1+r2)(r3+r4)][−(r1+r4)(r2+r3)]+[−(r1+r3)(r2+r4)][−(r1+r4)(r2+r3)]=αβ+αγ+βγ=p2−4r(7)
(8) [ − ( r 1 + r 2 ) ( r 3 + r 4 ) ] [ − ( r 1 + r 3 ) ( r 2 + r 4 ) ] [ − ( r 1 + r 4 ) ( r 2 + r 3 ) ] = α β γ = q 2 [-(r_1+r_2)(r_3+r_4)][-(r_1+r_3)(r_2+r_4)][-(r_1+r_4)(r_2+r_3)]=\alpha\beta\gamma=q^2\tag{8} [−(r1+r2)(r3+r4)][−(r1+r3)(r2+r4)][−(r1+r4)(r2+r3)]=αβγ=q2(8)
现在分别来证明(6)(7)(8),由等式(5)可以得出
(9) ( r 1 + r 2 + r 3 + r 4 ) 2 = r 1 2 + r 2 2 + r 3 2 + r 4 2 + 2 r 1 r 2 + 2 r 1 r 3 + 2 r 1 r 4 + 2 r 2 r 3 + 2 r 2 r 4 + 2 r 3 r 4 = ( r 1 2 + r 2 2 + r 3 2 + r 4 2 ) + ( r 1 + r 2 ) ( r 3 + r 4 ) + ( r 1 + r 3 ) ( r 2 + r 4 ) + ( r 1 + r 4 ) ( r 2 + r 3 ) = 0 \begin{aligned} (r1+r2+r3+r4)^2=r1^2+r2^2+r3^2+r4^2+2r_1r_2+2r_1r_3+2r_1r_4+2r_2r_3+2r_2r_4+2r_3r_4\\ =(r1^2+r2^2+r3^2+r4^2)+(r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)=0\tag{9} \end{aligned} (r1+r2+r3+r4)2=r12+r22+r32+r42+2r1r2+2r1r3+2r1r4+2r2r3+2r2r4+2r3r4=(r12+r22+r32+r42)+(r1+r2)(r3+r4)+(r1+r3)(r2+r4)+(r1+r4)(r2+r3)=0(9)
所以有
( r 1 + r 2 ) ( r 3 + r 4 ) + ( r 1 + r 3 ) ( r 2 + r 4 ) + ( r 1 + r 4 ) ( r 2 + r 3 ) = − ( r 1 2 + r 2 2 + r 3 2 + r 4 2 ) = 2 u 2 − 2 ( t + v ) = − 2 p \begin{aligned} (r_1+r_2)(r_3+r_4)+(r_1+r_3)(r_2+r_4)+(r_1+r_4)(r_2+r_3)&=-(r1^2+r2^2+r3^2+r4^2)\\ &=2u^2-2(t+v) \\ &=-2p \end{aligned} (r1+r2)(r3+r4)+(r1+r3)(r2+r4)+(r1+r4)(r2+r3)=−(r12+r22+r32+r42)=2u2−2(t+v)=−2p
(7)式可以表示成
[ ( r 1 + r 2 ) ( r 1 + r 3 ) ] 2 + [ ( r 1 + r 2 ) ( r 1 + r 4 ) ] 2 + [ ( r 1 + r 3 ) ( r 1 + r 4 ) ] 2 = ( r 1 2 + r 1 r 2 + r 1 r 3 + r 2 r 3 ) 2 + ( r 1 2 + r 1 r 2 + r 1 r 4 + r 2 r 4 ) 2 + ( r 1 2 + r 1 r 3 + r 1 r 4 + r 3 r 4 ) 2 = ( r 1 2 ) 2 + ( r 1 r 2 ) 2 + ( r 1 r 3 ) 2 + ( r 2 r 3 ) 2 + 2 r 1 3 r 2 + 2 r 1 3 r 3 + 2 r 1 2 r 2 r 3 + 2 r 1 2 r 2 r 3 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + ( r 1 2 ) 2 + ( r 1 r 2 ) 2 + ( r 1 r 4 ) 2 + ( r 2 r 4 ) 2 + 2 r 1 3 r 2 + 2 r 1 3 r 4 + 2 r 1 2 r 2 r 4 + 2 r 1 2 r 2 r 4 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + ( r 1 2 ) 2 + ( r 1 r 3 ) 2 + ( r 1 r 4 ) 2 + ( r 3 r 4 ) 2 + 2 r 1 3 r 3 + 2 r 1 3 r 4 + 2 r 1 2 r 3 r 4 + 2 r 1 2 r 3 r 4 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 \begin{aligned} [(r_1+r_2)(r_1+r_3)]^2+[(r_1+r_2)(r_1+r_4)]^2+[(r_1+r_3)(r_1+r_4)]^2&=\\ (r_1^2+r_1r_2+r_1r_3+r_2r_3)^2+(r1^2+r_1r_2+r_1r_4+r_2r_4)^2+(r_1^2+r_1r_3+r_1r_4+r_3r_4)^2&=\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_3)^2+(r_2r_3)^2+2r_1^3r_2+2r_1^3r_3+2r_1^2r_2r_3+2r_1^2r_2r_3+2r_1r_2^2r_3+2r_1r_2r_3^2+\\ (r_1^2)^2+(r_1r_2)^2+(r_1r_4)^2+(r_2r_4)^2+2r_1^3r_2+2r_1^3r_4+2r_1^2r_2r_4+2r_1^2r_2r_4+2r_1r_2^2r_4+2r_1r_2r_4^2+\\ (r_1^2)^2+(r_1r_3)^2+(r_1r_4)^2+(r_3r_4)^2+2r1^3r_3+2r_1^3r_4+2r_1^2r_3r_4+2r_1^2r_3r_4+2r_1r_3^2r_4+2r_1r_3r_4^2 \end{aligned} [(r1+r2)(r1+r3)]2+[(r1+r2)(r1+r4)]2+[(r1+r3)(r1+r4)]2(r12+r1r2+r1r3+r2r3)2+(r12+r1r2+r1r4+r2r4)2+(r12+r1r3+r1r4+r3r4)2(r12)2+(r1r2)2+(r1r3)2+(r2r3)2+2r13r2+2r13r3+2r12r2r3+2r12r2r3+2r1r22r3+2r1r2r32+(r12)2+(r1r2)2+(r1r4)2+(r2r4)2+2r13r2+2r13r4+2r12r2r4+2r12r2r4+2r1r22r4+2r1r2r42+(r12)2+(r1r3)2+(r1r4)2+(r3r4)2+2r13r3+2r13r4+2r12r3r4+2r12r3r4+2r1r32r4+2r1r3r42==
根据(9)式有 r 2 2 + r 3 2 + r 4 2 = − r 1 2 − 2 r 1 r 2 − 2 r 1 r 3 − 2 r 1 r 4 − 2 r 2 r 3 − 2 r 2 r 4 − 2 r 3 r 4 r_2^2+r_3^2+r_4^2=-r_1^2-2r_1r_2-2r_1r_3-2r_1r_4-2r_2r_3-2r_2r_4-2r_3r_4 r22+r32+r42=−r12−2r1r2−2r1r3−2r1r4−2r2r3−2r2r4−2r3r4代入上式化简为
3 ( r 1 2 ) 2 + 2 r 1 2 ( r 2 2 + r 3 2 + r 4 2 ) + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 4 r 1 3 r 2 + 4 r 1 3 r 3 + 4 r 1 3 r 4 + 4 r 1 2 r 2 r 3 + 4 r 1 2 r 2 r 4 + 4 r 1 3 r 3 r 4 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 = r 1 4 + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 2 r 1 r 2 2 r 3 + 2 r 1 r 2 r 3 2 + 2 r 1 r 2 2 r 4 + 2 r 1 r 2 r 4 2 + 2 r 1 r 3 2 r 4 + 2 r 1 r 3 r 4 2 = r 1 4 + r 2 2 ( r 3 2 + r 4 2 ) + r 3 2 r 4 2 + 2 r 1 r 2 [ r 2 ( r 3 + r 4 ) + ( r 3 2 + r 4 2 ) ] + 2 r 1 r 3 r 4 ( r 3 + r 4 ) \begin{aligned} 3(r_1^2)^2+2r_1^2(r_2^2+r_3^2+r_4^2)+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+4r_1^3r_2+4r_1^3r_3+4r_1^3r_4+4r_1^2r_2r_3+4r_1^2r_2r_4+4r_1^3r_3r_4&+\\ 2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2^2r_3+2r_1r_2r_3^2+2r_1r_2^2r_4+2r_1r_2r_4^2+2r_1r_3^2r_4+2r_1r_3r_4^2&=\\ r_1^4+r_2^2(r_3^2+r_4^2)+r_3^2r_4^2+2r_1r_2[r_2(r_3+r_4)+(r_3^2+r_4^2)]+2r_1r_3r_4(r_3+r_4) \end{aligned} 3(r12)2+2r12(r22+r32+r42)+r22(r32+r42)+r32r42+4r13r2+4r13r3+4r13r4+4r12r2r3+4r12r2r4+4r13r3r42r1r22r3+2r1r2r32+2r1r22r4+2r1r2r42+2r1r32r4+2r1r3r42r14+r22(r32+r42)+r32r42+2r1r22r3+2r1r2r32+2r1r22r4+2r1r2r42+2r1r32r4+2r1r3r42r14+r22(r32+r42)+r32r42+2r1r2[r2(r3+r4)+(r32+r42)]+2r1r3r4(r3+r4)+==
根据(2)式与韦达定理使用变量uvt替换r3,r4将上式进一步化简为
r 1 4 + ( u 2 − 2 t − r 1 2 ) ( u 2 − 2 v ) + v 2 + 2 t [ ( − u − r 1 ) u + u 2 − 2 v ] + 2 r 1 u v = r 1 4 + ( u 2 − 2 t ) ( u 2 − 2 v ) + v 2 − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 − 4 t v = r 1 4 + u 4 − 2 ( t + v ) u 2 + v 2 + 4 t v − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 − 4 t v = r 1 4 + ( t + v − u 2 ) 2 − t 2 − 2 t v − r 1 2 ( u 2 − 2 v ) + 2 u ( v − t ) r 1 = r 1 4 + ( v + t − u 2 ) r 1 2 + ( v − t ) r 1 2 + 2 u ( v − t ) r 1 + ( t + v − u 2 ) 2 − t 2 − 2 t v = r 1 4 + ( v + t − u 2 ) r 1 2 + u ( v − t ) r 1 + t v + ( v − t ) r 1 2 + u ( v − t ) r 1 + ( v − t ) t + ( t + v − u 2 ) 2 − 4 t v = p 2 − 4 r \begin{aligned} r_1^4+(u^2-2t-r_1^2)(u^2-2v)+v^2+2t[(-u-r_1)u+u^2-2v]+2r_1uv&=\\ r_1^4+(u^2-2t)(u^2-2v)+v^2-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&=\\ r_1^4+u^4-2(t+v)u^2+v^2+4tv-r_1^2(u^2-2v)+2u(v-t)r_1-4tv&=\\ r_1^4+(t+v-u^2)^2-t^2-2tv-r_1^2(u^2-2v)+2u(v-t)r_1&=\\ r_1^4+(v+t-u^2)r_1^2+(v-t)r_1^2+2u(v-t)r_1+(t+v-u^2)^2-t^2-2tv&=\\ r_1^4+(v+t-u^2)r_1^2+u(v-t)r_1+tv+(v-t)r_1^2+u(v-t)r_1+(v-t)t+(t+v-u^2)^2-4tv&=\\ p^2-4r \end{aligned} r14+(u2−2t−r12)(u2−2v)+v2+2t[(−u−r1)u+u2−2v]+2r1uvr14+(u2−2t)(u2−2v)+v2−r12(u2−2v)+2u(v−t)r1−4tvr14+u4−2(t+v)u2+v2+4tv−r12(u2−2v)+2u(v−t)r1−4tvr14+(t+v−u2)2−t2−2tv−r12(u2−2v)+2u(v−t)r1r14+(v+t−u2)r12+(v−t)r12+2u(v−t)r1+(t+v−u2)2−t2−2tvr14+(v+t−u2)r12+u(v−t)r1+tv+(v−t)r12+u(v−t)r1+(v−t)t+(t+v−u2)2−4tvp2−4r======
(7)式也得到证明,下面证明等式(8)成立只需要证明 ( r 1 + r 2 ) ( r 1 + r 3 ) ( r 1 + r 4 ) (r_1+r_2)(r_1+r_3)(r_1+r_4) (r1+r2)(r1+r3)(r1+r4)等于 ± q \pm q ±q就可以了
( r 1 + r 2 ) ( r 1 + r 3 ) ( r 1 + r 4 ) = r 1 3 + r 1 2 r 2 + r 1 2 r 3 + r 1 2 r 4 + r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 3 r 4 + r 2 r 3 r 4 = r 1 2 ( r 1 + r 2 + r 3 + r 4 ) + r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 3 r 4 + r 2 r 3 r 4 = r 1 r 2 ( r 3 + r 4 ) + ( r 1 + r 2 ) r 3 r 4 = u ( t − v ) = − q \begin{aligned} (r_1+r_2)(r_1+r_3)(r_1+r_4)&=\\ r_1^3+r_1^2r_2+r_1^2r_3+r_1^2r_4+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&=\\ r_1^2(r_1+r_2+r_3+r_4)+r_1r_2r_3+r_1r_2r_4+r_1r_3r_4+r_2r_3r_4&=\\ r_1r_2(r_3+r_4)+(r_1+r_2)r_3r_4&=\\ u(t-v)&=-q \end{aligned} (r1+r2)(r1+r3)(r1+r4)r13+r12r2+r12r3+r12r4+r1r2r3+r1r2r4+r1r3r4+r2r3r4r12(r1+r2+r3+r4)+r1r2r3+r1r2r4+r1r3r4+r2r3r4r1r2(r3+r4)+(r1+r2)r3r4u(t−v)=====−q
现在(6)(7)(8)都得到了证明所以确定了它们是一元三次方程(4)的三个根,反过来如果已知(4)的三个根如何来确定(1)表达以及求 r 1 r_1 r1, r 2 r_2 r2, r 3 r_3 r3, r 4 r_4 r4呢?首先,无论(*)中取 α \alpha α, β \beta β, γ \gamma γ次序如何,可以确定最终得出的解的集合是相同的。其次,由于 U = u 2 U=u^2 U=u2,从(3)式可以看出 u = U u=\sqrt{U} u=U与 u = − U u=-\sqrt{U} u=−U只会交换(1)式中的t,v与s,u的值,令 r 1 + r 2 = α r_1+r_2=\sqrt{\alpha} r1+r2=α或使 r 1 + r 2 = − α r_1+r_2=-\sqrt{\alpha} r1+r2=−α只是交换了两个分解式的次序,选择 r 1 + r 2 = α r_1+r_2=\sqrt{\alpha} r1+r2=α另外,
r 1 + r 3 = ± β , r 1 + r 4 = ± γ r_1+r_3=\pm \sqrt{\beta},r_1+r_4=\pm \sqrt{\gamma} r1+r3=±β,r1+r4=±γ有四种可能的选择,枚举并求出所有的解之后r1,r2,r3,r4的解的集合分成两组 { r 1 , r 2 , r 3 , r 4 } \{r_1,r_2,r_3,r_4\} {
r1,r2,r3,r4}与 { − r 1 , − r 2 , − r 3 , − r 4 } \{-r_1,-r_2,-r_3,-r_4\} {
−r1,−r2,−r3,−r4},但并不是所有的取值都满足(3),因为选取其中一组计算
r 1 r 2 = [ α − ( β + γ − 2 β γ ) ] / 4 = [ 2 α − ( α + β + γ ) − 2 β γ ] / 4 = p + α 2 − β γ 2 = t = ( p + α 2 − q α ) 2 ⇒ q α = β γ \begin{aligned} r_1r_2=[\alpha-(\beta+\gamma-2\sqrt{\beta}\sqrt{\gamma})]/4= [2\alpha-(\alpha+\beta+\gamma)-2\sqrt{\beta}\sqrt{\gamma}]/4&=\\ \frac{p+{\sqrt{\alpha}}^2-\sqrt{\beta}\sqrt{\gamma}}{2}=t&=\frac{(p+{\sqrt{\alpha}}^2-\frac{q}{\sqrt{\alpha}})}{2}\\ \Rightarrow \frac{q}{\sqrt{\alpha}} = \sqrt{\beta}\sqrt{\gamma} \end{aligned} r1r2=[α−(β+γ−2βγ)]/4=[2α−(α+β+γ)−2βγ]/42p+α2−βγ=t⇒αq=βγ==2(p+α2−αq)
当满足 q α = β γ \frac{q}{\sqrt{\alpha}} = \sqrt{\beta}\sqrt{\gamma} αq=βγ条件时解集合表示为 { r 1 , r 2 , r 3 , r 4 } \{r_1,r_2,r_3,r_4\} {
r1,r2,r3,r4},选取其中一种情形计算具体的r1,r2,r3,r4例如
(10) r 1 + r 2 + r 3 + r 4 = 0 r 1 + r 2 = α r 1 + r 3 = β r 1 + r 4 = γ \begin{aligned} r_1+r_2+r_3+r_4=0 \\ r_1+r_2=\sqrt{\alpha}\\ r_1+r_3=\sqrt{\beta} \\ r_1+r4=\sqrt{\gamma}\tag{10} \end{aligned} r1+r2+r3+r4=0r1+r2=αr1+r3=βr1+r4=γ(10)
根据(10)式解出的方程组的解是
(2) r 1 = α + β + γ 2 r 2 = α − β − γ 2 r 3 = − α + β − γ 2 r 4 = − α − β + γ 2 \begin{aligned} r_1&=\frac{\sqrt{\alpha}+\sqrt{\beta}+\sqrt{\gamma}}{2} \\ r_2&=\frac{\sqrt{\alpha}-\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_3&=\frac{-\sqrt{\alpha}+\sqrt{\beta}-\sqrt{\gamma}}{2} \\ r_4&=\frac{-\sqrt{\alpha}-\sqrt{\beta}+\sqrt{\gamma}}{2}\tag{2} \end{aligned} r1r2r3r4=2α+β+γ=2α−β−γ=2−α+β−γ=2−α−β+γ(2)
上式可以看到四次方程每一个解都使用三次方程的解的根表示(根与根之间也存在关系),显然对于每一个u四次方程的解集都是相同的。
请参考 https://en.wikipedia.org/wiki/Quartic_function
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/25507.html