控制收敛定理:Dominated Convergence Theorem

控制收敛定理:Dominated Convergence Theorem控制收敛定理(DominatedConvergenceTheorem)是继Fatou'sLemma与单调收敛定理(MonotoneConvergenceTheorem)后的又一重要定理,在测度论、条件期望、随机微积分中有诸多重要应用。在证明前先引入一条引理:Lemma对于任意

大家好,欢迎来到IT知识分享网。控制收敛定理:Dominated Convergence Theorem

控制收敛定理(Dominated Convergence Theorem)是继Fatou’s Lemma与单调收敛定理(Monotone Convergence Theorem)后的又一重要定理,在测度论、条件期望、随机微积分中有诸多重要应用。


在证明前先引入一条引理:

Lemma

对于任意实序列 \(\left\{ a_{n} \right\}^{\infty}_{n=1}\),都有:

\[\bf \liminf\limits_{n \rightarrow \infty} ~ \left( -a_{n} \right) = -\limsup\limits_{n \rightarrow \infty} ~ \left( a_{n} \right) \]


Proof. (Lemma)

对于: \(\forall N \in \mathbb{N}: \inf\limits_{k \geq N} \left( -a_{k} \right) = \inf\left\{ -a_{N}, -a_{N+1}, -a_{N+2}, \ldots \right\}\)

即,由定义:

\[\forall k \geq N: ~ -a_{k} \geq \inf\limits_{k \geq N} \left( -a_{k} \right) \]

并且:

\[\forall \epsilon > 0: ~ \exists k_{0} \in \mathbb{N}: ~ -a_{k_{0}} < \inf\limits_{k \geq N} \left( -a_{k} \right) + \epsilon \]

而以上两个statement等价于:

\[\forall k \geq N: ~ a_{k} \leq -\inf\limits_{k \geq N} \left( -a_{k} \right) \]

与:

\[\forall \epsilon > 0: ~ \exists k_{0} \in \mathbb{N}: ~ a_{k_{0}} > -\inf\limits_{k \geq N} \left( -a_{k} \right) – \epsilon \]

可以发现,若将 \(-\inf\limits_{k \geq N} \left( -a_{k} \right)\) 视作一个整体,则恰好满足supremum的定义,即:

\[\forall N \in \mathbb{N}: ~ -\inf\limits_{k \geq N} \left( -a_{k} \right) = \sup\limits_{k \geq N} \left( a_{k} \right) \]

所以:

\[\forall N \in \mathbb{N}: ~ \sup\limits_{k \geq N} \left( a_{k} \right) + \inf\limits_{k \geq N} \left( -a_{k} \right) = 0 \]

所以:

\[\lim\limits_{N \rightarrow \infty} \left( \sup\limits_{k \geq N}\left( a_{k} \right) + \inf\limits_{k \geq N} \left( -a_{k} \right) \right) ~ = ~ \lim\limits_{N \rightarrow \infty} \sup\limits_{k \geq N}\left( a_{k} \right) + \lim\limits_{N \rightarrow \infty}\inf\limits_{k \geq N} \left( -a_{k} \right) = 0\\ \implies \qquad \qquad \qquad \limsup\limits_{n \rightarrow \infty} \left( a_{n} \right) ~ + ~ \liminf\limits_{n \rightarrow \infty} \left( -a_{n} \right) ~ = ~ 0 \qquad \qquad \qquad \qquad \]


Dominated Convergence Theorem(控制收敛定理)

\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)\(E \in \mathcal{M}\) 上的可测函数序列,\(g\) 为同在 \(E\) 上的勒贝格可积函数(即,\(\int_{E} ~ g ~ dm < \infty\)),满足对于 $\forall n \geq 1: |f_{n}| \leq g ~ $ almost surely。若 $f = \lim\limits_{n \rightarrow \infty} f_{n} ~ $ almost surely,那么:

  • \(f\)\(E\) 上可积
  • 且:\(\lim\limits_{n\rightarrow\infty} \int_{E} ~ f_{n} ~ dm = \int_{E} ~ f ~ dm = \int_{E} ~ \lim\limits_{n \rightarrow \infty} f_{n} ~ dm\)


Proof. (Dominated Convergence Theorem)

由:\(|f_{n}| \leq g\),有 \(-g \leq f_{n} \leq g \iff 0 \leq f_{n} + g \leq 2g\),那么:

\[\]

1. \(f_{n} + g \geq 0\) 非负且可积,并且逐点收敛于 \(\left( f + g \right)\),对其应用Fatou’s Lemma:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ \left( f_{n} + g \right) ~ dm \geq \int_{E} ~ \liminf\limits_{n \rightarrow \infty} \left( f_{n} + g \right) ~ dm = \int_{E} ~ \left( f + g \right) ~ dm \]

则:

\[\liminf\limits_{n \rightarrow \infty} \left( \int_{E} ~ f_{n} ~ dm + \int_{E} ~ g ~ dm \right) ~ = ~ \liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm + \int_{E} ~ g ~ dm ~ \geq ~ \int_{E} ~ f ~ dm + \int_{E} ~ g ~ dm\\ \implies \qquad \qquad \qquad \qquad \qquad \liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ \geq ~ \int_{E} ~ f ~ dm \qquad \qquad \qquad \qquad \qquad \]

\[\]

2. \(2g – \left( f_{n} + g \right) = g – f_{n} \geq 0\) 非负且可积,并且逐点收敛于 \(\left( g – f \right)\),对其应用Fatou’s Lemma:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ \left( g – f_{n} \right) ~ dm \geq \int_{E} \liminf\limits_{n \rightarrow \infty} \left( g – f_{n} \right) ~ dm \]

\[\begin{align*} \implies \qquad \qquad \int_{E} \liminf\limits_{n \rightarrow \infty} \left( g – f_{n} \right) ~ dm ~ & \leq ~ \liminf\limits_{n \rightarrow \infty} \int_{E} \left( g – f_{n} \right) ~ dm \qquad \qquad \\ & = ~ \liminf\limits_{n \rightarrow \infty} \left( \int_{E} g ~ dm – \int_{E} f ~ dm \right) \qquad \qquad \\ & = ~ \int_{E} g ~ dm + \liminf\limits_{n \rightarrow \infty} \int_{E} \left( -f_{n} \right) ~ dm \qquad \qquad \end{align*} \]

由引理所证:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ \left( -f_{n} \right) ~ dm ~ = ~ -\limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \]

则:

\[\int_{E} ~ \liminf\limits_{n \rightarrow \infty} \left( g – f_{n} \right) ~ dm ~ = ~ \int_{E} ~ \left( g – f \right) ~ dm ~ = ~ \int_{E} ~ g ~ dm – \int_{E} ~ f ~ dm ~ \leq ~ \int_{E} ~ g ~ dm – \limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm\\ \implies \qquad \qquad \qquad \qquad \limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \leq \int_{E} ~ f ~ dm \qquad \qquad \qquad \qquad \]

又由 1. 中所得:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ \geq ~ \int_{E} ~ f ~ dm \]

以及显然:

\[\limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \geq \liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \]

综上则有:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ \leq ~ \limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ \leq ~ \int_{E} ~ f ~ dm ~ \leq ~ \liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \]

由于当且仅当序列上极限等于下极限时,序列存在极限,且极限值、上极限值、下极限值三者相等,最终有:

\[\liminf\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ = ~ \limsup\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ = ~ \lim\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm ~ = ~ \int_{E} ~ f ~ dm \]

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/27567.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信