径向分布函数怎么理解_rbf径向基函数

径向分布函数怎么理解_rbf径向基函数径向分布函数g(r)代表了球壳内的平均数密度为离中心分子距离为r,体积为的球壳内的瞬时分子数。具体参见李如生,《平衡和非平衡统计力学》科学出版社:1995CODE:SUBROUTINEGR(NSWITCH)IMPLICITDOUBLEPRECISION(A-H,O-Z)PARAMET

大家好,欢迎来到IT知识分享网。

径向分布函数g(r)代表了球壳内的平均数密度

为离中心分子距离为r,体积为 的球壳内的瞬时分子数。
具体参见李如生,《平衡和非平衡统计力学》科学出版社:1995

 

CODE:

SUBROUTINE GR(NSWITCH)

      IMPLICIT DOUBLE PRECISION(A-H,O-Z)

      PARAMETER(NM=40000,PI=3.141592653589793D0,NHIS=100)

      COMMON/LCS/X0(3,-2:2*NM),X(3,-2:2*NM,5),XIN(3,-2:2*NM),

     $XX0(3,-2:2*NM),XX(3,-2:2*NM,5),XXIN(3,-2:2*NM)

      COMMON/MOLEC/LPBC(3),MOLSP,MOLSA,NBX,NBY,NBZ,NPLA,LPBCSM,NC,NN,MC

      COMMON/WALLS/HI(3,3),G(3,3),DH,AREA,VOLUME,SCM(3)

      COMMON/PBCS/HALF,PBCX,PBCY,PBCZ

        COMMON/GR_VAR/ NGR

        DIMENSION H(3,3),GG(0:NHIS),R(0:NHIS)

      EQUIVALENCE(X0(1,-2),H(1,1))

C   *****************************************************************

C      如何确定分子数密度:DEN_IDEAL 

C      取分子总数作为模拟盒中的数密度,可保证采样分子总数=总分子数?

C====================================================================

C         N1=MOLSP+1

C      N2=MOLSP+NC

      DEN_IDEAL=MOLSP  

        G11=G(1,1)

      G22=G(2,2)

      G33=G(3,3)

      G12D=G(1,2)+G(2,1)

      G13D=G(1,3)+G(3,1)

      G23D=G(2,3)+G(3,2)

      IF(NSWITCH.EQ.0)THEN

          NGR=0

          DELR=HALF/NHIS

          DO I=1,NHIS

           GG(I)=0.D0 

           R(I)=0.D0 

          ENDDO 

      ELSE IF(NSWITCH.EQ.1)THEN

         NGR=NGR+1

       DO I=1,MOLSP-1

         DO J=I+1,MOLSP

C====================================================================

C     USE PBC IN X DIRECTION:  SUITABLE FOR PBCX=1

C                              NOT GREAT PROBLEM FOR PBCX=0 

C                              (THIS TIME USUALLY |DELTA X| < HALF)

C====================================================================

          XIJ=X0(1,I)-X0(1,J)

        IF(XIJ.GT.+HALF)XIJ=XIJ-PBCX

        IF(XIJ.LT.-HALF)XIJ=XIJ+PBCX

        YIJ=X0(2,I)-X0(2,J)

        IF(YIJ.GT.+HALF)YIJ=YIJ-PBCY

        IF(YIJ.LT.-HALF)YIJ=YIJ+PBCY

        ZIJ=X0(3,I)-X0(3,J)

        IF(ZIJ.GT.+HALF)ZIJ=ZIJ-PBCZ

        IF(ZIJ.LT.-HALF)ZIJ=ZIJ+PBCZ

        RSQ=XIJ*(G11*XIJ+G12D*YIJ+G13D*ZIJ)+

     $      YIJ*(G22*YIJ+G23D*ZIJ)+G33*ZIJ*ZIJ

          RRR=SQRT(RSQ)

          RRR=RRR/H(1,1)

C====================================================================

C      以上用数组G和H的结果与下同

C      RRR=SQRT(XIJ**2+YIJ**2+ZIJ**2)

C      G11=H(1,1)**2

C====================================================================

          IF(RRR.LT.HALF)THEN

           IG=INT(RRR/DELR)

           GG(IG)=GG(IG)+2

          ENDIF

       ENDDO

         ENDDO

      ELSE IF(NSWITCH.EQ.2)THEN

        DO I=1,NHIS

           R(I)=DELR*(I+0.5D0)

        ENDDO

        DO I=1,NHIS

           VB=(4.D0/3.D0)*PI*(((I+1)**3-I**3)*(DELR**3))

           GNID=VB*DEN_IDEAL

           GG(I)=GG(I)/(NGR*MOLSP*GNID)

        ENDDO

        OPEN(UNIT=31,FILE=”GR.DAT”)

        DO I=1,NHIS

           WRITE(31,*)R(I),GG(I)

        ENDDO

        CLOSE(31)

        ENDIF

        RETURN 

        END

这样的代码看着不够明了。。。。。。

伪代码:

for (int i = 0; i < TOTN – 1; ++i)
  for (int j = i + 1; j < TOTN; ++j) {
    double dij = sqrt( pow(Pos[0]-Pos[j][0], 2) + pow(Pos[1]-Pos[j][1], 2) + pow(Pos[2]-Pos[j][2], 2));
    int kbin = func(dij); // dij所对应的bin的序号
    g(kbin) += 2;
  }
  // normalize
  for (int k = 0; k < NBIN; ++k)
    g(k) /= 4.0 * PI * r(k) * r(k) * dr * RHO; // r 为第k个bin所对应的距离值

calculate radial distribution function in molecular dynamics (转载科学网樊哲勇)

Here are the computer codes for this article:  

md_rdf.cpp

find_rdf.m

test_rdf.m    

 

         Calculating radial distribution function in molecular dynamics

 

First I recommend a very good book on molecular dynamics (MD) simulation: the book entitled “Molecular dynamics simulation: Elementary methods” by J. M. Haile. I read this book 7 years ago when I started to learn MD simulation, and recently I enjoyed a second reading of this fantastic book. If a beginner askes me which book he/she should read about MD, I will only recommend this. This is THE BEST introductory book on MD. It tells you what is model, what is simulation, what is MD simulation, and what is the correct attitude for doing MD simulations.

 

In my last blog article, I have presented a Matlab code for calculating velocity autocorrelation function (VACF) and phonon density of states (PDOS) from saved velocity data. In this article, I will present a Matlab code for calculating the radial distribution function (RDF) from saved position data. The relevant definition and algorithm are nicely presented in Section 6.4 and Appendix A of Haile’s book. Here I only present a C code for doing MD simulation and a Matlab code for calculating and plotting the RDF. We aim to reproduce Fig. 6.22 in Haile’s book!

 

Step 1.

Use the C code provided above to do an MD simulation. Note that I have used a different unit systems than that used in Haile’s book (he used the LJ unit system). This code only takes 14 seconds to run in my desktop. Here are my position data (there are 100 frames and each frame has 256 atoms):

r.txt

 

Step 2.

Write a Matlab function which can calculate the RDF for one frame of positions:

 

function [g] = find_rdf(r, L, pbc, Ng, rc)

 

% determine some parameters

N = size(r, 1);         % number of particles

L_times_pbc = L .* pbc; % deal with boundary conditions

rho = N / prod(L);      % global particle density

dr = rc / Ng;           % bin size

 

% accumulate

g = zeros(Ng, 1);

for n1 = 1 : (N – 1)                               % sum over the atoms

   for n2 = (n1 + 1) : N                          % skipping half of the pairs

      r12 = r(n2, :) – r(n1, :);                  % position difference vector

      r12 = r12 – round(r12 ./L ) .* L_times_pbc; % minimum image convention

      d12 = sqrt(sum(r12 .* r12));                % distance

      if d12 < rc                                 % there is a cutoff

          index = ceil(d12 / dr);                % bin index

          g(index) = g(index) + 1;                % accumulate

      end

  end

end

 

% normalize

for n = 1 : Ng

   g(n) = g(n) / N * 2;           % 2 because half of the pairs have been skipped

   dV = 4 * pi * (dr * n)^2 * dr; % volume of a spherical shell

   g(n) = g(n) / dV;              % now g is the local density

   g(n) = g(n) / rho;             % now g is the RDF

end

 

Step 3.

Write a Matlab script to load the position data, call the function above, and plot the results:

 

clear; close all;

load r.txt; % length in units of Angstrom

 

% parameters from MD simulation

N = 256;                % number of particles

L = 5.60 * [4, 4, 4]; % box size

pbc = [1, 1, 1];        % boundary conditions

 

% number of bins (number of data points in the figure below)

Ng = 100;

 

% parameters determined automatically

rc = min(L) / 2;     % the maximum radius

dr = rc / Ng;        % bin size

Ns = size(r, 1) / N; % number of frames

 

% do the calculations

g = zeros(Ng, 1); % The RDF to be calculated

for n = 1 : Ns

   r1 = r(((n – 1) * N + 1) : (n * N), :); % positions in one frame

   g = g + find_rdf(r1, L, pbc, Ng, rc);    % sum over frames

end

g = g / Ns;                                 % time average in MD

 

% plot the data

r = (1 : Ng) * dr / 3.405;

figure;

plot(r, g, ‘o-‘);

xlim([0, 3.5]);

ylim([0, 3.5]);

xlabel(‘r^{\ast}’, ‘fontsize’, 15)

ylabel(‘g(r)’, ‘fontsize’, 15)

set(gca, ‘fontsize’, 15);

 

Here is the figure I obtained:

 

Does it resemble Fig. 6. 22 in Haile’s book?

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/29031.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信