阿贝尔变换

阿贝尔变换阿贝尔(Abel)变换什么是Abel变换设$B_{n}=\sum\limits_{i=1}^{n}b_{i}$,,则当$n\geq2$时,$b_{i}=B_{i}-B_{i-1}$,且$B_{1}=b_{1}$,于是当$n\geq2$时:$

大家好,欢迎来到IT知识分享网。阿贝尔变换

阿贝尔(Abel)变换

什么是 Abel 变换

\(B_{n} = \sum\limits_{i = 1} ^ {n}b_{i}\),,则当 \(n \geq 2\) 时,\(b_{i} = B_{i} – B_{i – 1}\),且 \(B_{1} = b_{1}\) ,于是当 \(n \geq 2\) 时:

\[\begin{aligned} \sum\limits_{i = 1} ^ {n} c_ib_i &= \sum\limits_{i = 2} ^ {n} c_{i} (B_{i} – B_{i – 1}) + c_{1}b_{1} \\ &= \sum\limits_{i = 2} ^ {n} c_{i}B_{i} – \sum\limits_{i = 1} ^ {n – 1} c_{i + 1}B_{i} + c_{1}b_{1} \\ &= \sum\limits_{i = 1} ^ {n} c_{i}B_{i} – \sum\limits_{i = 1} ^ {n – 1} c_{i + 1}B_{i}\\ &= \sum\limits_{i = 1} ^ {n – 1} (c_{i} – c_{i + 1})B_{i} + c_nB_{n} \end{aligned} \]

等差 \(\times\) 等比型数列求和

可以把等差数列推广到任意多项式数列的求和)

如果 \(c_{n}\) 是等差数列,那么 \(c_{n + 1} – c_{n}\) 就是一个常数, \(b_{n}\) 是等比数列,那么 \(B_{n}\) 可以通过等比数列求和快速计算,这样就能计算出 \(\sum\limits_{i = 1} ^ {n}c_{i}b_{i}\).

例:\(c_{n} = n, \ b_{n} = \frac{1}{2^{n}}\) ,求 \(T_{n} = \sum\limits_{i = 1} ^ {n} c_{i}b_{i}\).

由 Abel 变换:

\[\begin{aligned} T_{n} &= \sum\limits_{i = 1} ^ {n} c_{i}b_{i}\\ &= \sum\limits_{i = 1} ^ {n – 1}(-1)(1 – \frac{1}{2 ^{n}}) + n \times (1 – \frac{1}{2^{n}}) \\ &=1 – \frac{1}{2^{n – 1}} – n + 1 + n – \frac{n}{2^{n}} \\ &= 2 – \frac{n + 2}{2 ^ {n}} \end{aligned} \]

例:求 \((2n – 1)2^{n}\) 的前 \(n\) 项和.

\[\begin{aligned} T_{n} &= \sum\limits_{i = 1} ^ {n} (2n – 1)2^{n} \\ &= \sum\limits_{i = 1} ^ {n – 1}-2 \times (2 ^ {i + 1} – 2) + (2n – 1) \times (2 ^ {n + 1} – 2) \\ &= (2n – 3) 2^{n + 1} + 6 \end{aligned} \]

例: 求 \(n ^ {2}\) 的前 \(n\) 项和.

\(c_n = b_n = n\) ,那么由 Abel 变换:

\[\begin{aligned} T_{n} &= \sum\limits_{i = 1} ^ {n} n \times n \\ &= \sum\limits_{i = 1} ^ {n – 1} -1 \times \frac{i(i+1)}{2} + \frac{n^{2}(n +1)}{2} \\ &= -\frac{1}{2} \times (T_{n – 1} + n ^ {2} + \frac{n(n – 1)}{2} – n^{2}) + \frac{n^{2}(n + 1)}{2} \\ \frac{3}{2} T_{n} &= -\frac{1}{2}(\frac{-n^{2} – n}{2}) + \frac{n^{2}(n + 1)}{2}\\ &= \frac{n(n + 1)(2n + 1)}{4} \\ T_{n} &= \frac{n(n+1)(2n + 1)}{6} \end{aligned} \]

按这个思路,我们可以求出数列 \({n^{m}}\) 的前 \(k\) 项和。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/30446.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信