统计与分布之伯努利分布与二项分布

统计与分布之伯努利分布与二项分布目录目录前文列表伯努利分布二项分布前文列表计数原理组合与排列统计与分布之高斯分布统计与分布之泊松分布伯努利分布伯努利分布(BernoulliDistribution),是一种离散分布,又称为“0-1分布”或“两点分布”。例如抛硬币的正面或反面…

大家好,欢迎来到IT知识分享网。

目录

  • 目录
  • 前文列表
  • 伯努利分布
  • 二项分布

前文列表

计数原理
组合与排列
统计与分布之高斯分布
统计与分布之泊松分布

伯努利分布

伯努利分布(Bernoulli Distribution),是一种离散分布,又称为 “0-1 分布” 或 “两点分布”。例如抛硬币的正面或反面,物品有缺陷或没缺陷,病人康复或未康复,此类满足「只有两种可能,试验结果相互独立且对立」的随机变量通常称为伯努利随机变量。

对于伯努利随机变量 X,如果使用 1 表示成功,其概率为 p(0<p<1);使用 0 表示失败,其概率为 q=1-p。则可以称伯努利随机变量 X 服从参数为 p 的伯努利分布,其分布律为:

这里写图片描述

对于伯努利分布来说,其离散型随机变量期望为:

E(x) = ∑x∗p(x) = 1∗p+0∗(1−p) = p

方差为:

D(x) = E(x^2)−(E^2)(x) = 12∗p−p2 = p(1−p)

二项分布

二项分布(Binomial Distribution)也是一种离散型概率分布,又称为「n 重伯努利分布」。

首先看「n 重伯努利试验」的定义:如果随机变量序列 Xn(n=1, 2, …) 中的随机变量均服从与参数为 p 的伯努利分布,那么随机变量序列 Xn 就形成了参数为 p 的 n 重伯努利试验。例如,假定重复抛掷一枚均匀硬币 n 次,如果在第 i 次抛掷中出现正面,令 Xi=1;如果出现反面,则令 Xi=0。那么,随机变量 Xn(n=1, 2, …) 就形成了参数为 1/2 的 n 重伯努利试验。

可见,n 重伯努利试验需满足下列条件:

  • 每次试验只有两种结果,即 X=1,或 X=0
  • 各次试验中的事件互相独立,且 X=1 和 X=0 的概率分别为 p(0<p<1)q=1-p

n 重伯努利试验的结果就是 n 重伯努利分布,即二项分布。反之,当 Xn(n=1) 时,二项分布的结果服从于伯努利分布。因为二项分布实际上是进行了 n 次的伯努利分布,所以二项分布的离散型随机变量期望为 E(x)=np,方差为 D(x)=np(1-p) 。

需要注意的是,满足二项分布的样本空间有一个非常重要的性质,假设进行 n 次独立试验,满足二项分布(每次试验成功的概率为 p,失败的概率为 1−p),那么成功的次数 X 就是一个参数为 n 和 p 的二项随机变量,即满足下述公式

P(X=k) = C(n, k) * p^k * (1-p)^(n-k)
  • X=k,试验 n 次,成功的次数恰好有 k 次的随机变量(事件)
  • C(n, k),表示从集合 n 中取出 k 个元素的组合数,结果为 n!/(k!*(n-k)!)

例如,小明参加雅思考试,每次考试的通过率 1/3,不通过率为 q=2/3。如果小明连续参加考试 4 次,那么恰好有两次通过的概率是多少?
解析:因为每次考试只有两种结果,通过或不通过,符合条件 (1);每次考试结果互相独立,且概率不变,符合条件 (2)。满足二项分布样本,代入公式求解得概率为:C(4, 2)*(1/2)^2*(2/3)^(4-2) ≈ 8/27

二项分布概率直方图

这里写图片描述

图形特性:

  • 当 p=q 时,图形是对称的
  • 当 p≠q 时,图形呈偏态,p<qp>q 的偏斜方向相反
  • 当 (n+1)p 不为整数时,二项概率 P(X=k) 在 k=(n+1)*p 时达到最大值
  • 当 (n+1)p 为整数时,二项概率 P(X=k) 在 k=(n+1)*p 和 k=(n+1)*p-1 时达到最大值

NOTE:当 n 很大时,即使 p≠q,二项分布概率直方图的偏态也会逐渐降低,最终成为正态分布。也就是说,二项分布的极限情形即为正态分布,故当 n 很大时,二项分布的概率可用正态分布的概率作为近似值。那么 n 需要多大才可谓之大呢?
一般规定,当 p<qnp≥5,或 p>qnq≥5 时,这时的 n 就足够大了,可以用正态分布的概率作为近似值。则正态分布参数 μ=np,σ^2=np(1-p)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/30838.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信