大家好,欢迎来到IT知识分享网。
Python jieba 库的使用说明
1、jieba库基本介绍
(1)、jieba库概述
jieba是优秀的中文分词第三方库
– 中文文本需要通过分词获得单个的词语
– jieba是优秀的中文分词第三方库,需要额外安装
– jieba库提供三种分词模式,最简单只需掌握一个函数
(2)、jieba分词的原理
Jieba分词依靠中文词库
– 利用一个中文词库,确定汉字之间的关联概率
– 汉字间概率大的组成词组,形成分词结果
– 除了分词,用户还可以添加自定义的词组
2、jieba库使用说明
(1)、jieba分词的三种模式
精确模式、全模式、搜索引擎模式
– 精确模式:把文本精确的切分开,不存在冗余单词
– 全模式:把文本中所有可能的词语都扫描出来,有冗余
– 搜索引擎模式:在精确模式基础上,对长词再次切分
(2)、jieba库常用函数
3、jieba应用实例
4、利用jieba库统计三国演义中任务的出场次数
import jieba txt = open("D:\\三国演义.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) # 使用精确模式对文本进行分词 counts = {} # 通过键值对的形式存储词语及其出现的次数 for word in words: if len(word) == 1: # 单个词语不计算在内 continue else: counts[word] = counts.get(word, 0) + 1 # 遍历所有词语,每出现一次其对应的值加 1 items = list(counts.items())#将键值对转换成列表 items.sort(key=lambda x: x[1], reverse=True) # 根据词语出现的次数进行从大到小排序 for i in range(15): word, count = items[i] print("{0:<5}{1:>5}".format(word, count))
统计了次数对多前十五个名词,曹操不愧是一代枭雄,第一名当之无愧,但是我们会发现得到的数据还是需要进一步处理,比如一些无用的词语,一些重复意思的词语。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/31005.html