用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!A*算法,A*算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题有效算法。通过二维数组构建的一个迷宫,“%”表示墙壁,A

大家好,欢迎来到IT知识分享网。

A*算法,A*(A-Star)算法是一种静态路网中求解最短路径最有效的直接搜索方法,也是解决许多搜索问题有效算法。算法中的距离估算值与实际值越接近,最终搜索速度越快,它常用于游戏中。通过二维数组构建的一个迷宫,“%”表示墙壁,A为起点,B为终点,“#”代表障碍物,“*”代表算法计算后的路径。

用Java实现A*算法,带你解析搜索核心算法!

代码结构图如下:

用Java实现A*算法,带你解析搜索核心算法!

小编整理了一份java学习资料,私信回复【01】,获取源码。

用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!

算法的核心公式为:F=G+H

把地图上的节点看成一个网格。

G=从起点A,沿着产生的路径,移动到网格上指定节点的移动消耗,在这个例子里,我们令水平或者垂直移动的耗费为10,对角线方向耗费为14。我们取这些值是因为沿对角线

的距离是沿水平或垂直移动耗费的的根号2,或者约1.414倍。为了简化,我们用10和14近似。

既然我们在计算沿特定路径通往某个方格的G值,求值的方法就是取它父节点的G值,然后依照它相对父节点是对角线方向或者直角方向(非对角线),分别增加14和10。例子中这

个方法的需求会变得更多,因为我们从起点方格以外获取了不止一个方格。

H=从当前格移动到终点B的预估移动消耗。为什么叫”预估“呢,因为我们没有办法事先知道路径的长度,这里我们使用曼哈顿方法,它计算从当前格到目的格之间水平和垂直

的方格的数量总和,忽略对角线方向。然后把结果乘以10。

F的值是G和H的和,这是我们用来判断优先路径的标准,F值最小的格,我们认为是优先的路径节点。

实现步骤

算法使用java写的,先看一看节点类的内容

用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!

还需要一个地图类,在map的构造方法中,我通过创建节点的二维数组来实现一个迷宫地图,其中包括起点和终点

用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!

下面是最重要的AStar类

操作过程

1从起点A开始,并且把它作为待处理点存入一个“开启列表”,这是一个待检查方格的列表。

2寻找起点周围所有可到达或者可通过的方格,跳过无法通过的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资

料是十分重要的。后面会解释它的具体用途。

3从开启列表中删除起点A,把它加入到一个“关闭列表”,列表中保存所有不需要再次检查的方格。

经过以上步骤,“开启列表”中包含了起点A周围除了障碍物的所有节点。他们的父节点都是A,通过前面讲的F=G+H的公式,计算每个节点的G,H,F值,并按照F的值大小,从小

到大进行排序。并对F值最小的那个节点做以下操作

4,把它从开启列表中删除,然后添加到关闭列表中。

5,检查所有相邻格子。跳过那些不可通过的(1.在”关闭列表“中,2.障碍物),把他们添加进开启列表,如果他们还不在里面的话。把选中的方格作为新的方格的父节点。

6,如果某个相邻格已经在开启列表里了,检查现在的这条路径是否更好。换句话说,检查如果我们用新的路径到达它的话,G值是否会更低一些。如果不是,那就什么都不

做。(这里,我的代码中并没有判断)

7,我们重复这个过程,直到目标格(终点“B”)被添加进“开启列表”,说明终点B已经在上一个添加进“关闭列表”的节点的周围,只需走一步,即可到达终点B。

8,我们将终点B添加到“关闭列表”

9,最后一步,我们要将从起点A到终点B的路径表示出来。父节点的作用就显示出来了,通过“关闭列表”中的终点节点的父节点,改变其value值,顺藤摸瓜即可以显示出路径。

看看代码

用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!

用Java实现A*算法,带你解析搜索核心算法!

最后写一个Main方法

用Java实现A*算法,带你解析搜索核心算法!

修改地图再测试一下,看看效果

用Java实现A*算法,带你解析搜索核心算法!

总结

保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:估价值h(n)<=n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到

最优解。如果估价值>实际值,搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

声明:本文内容来源于网络,如有侵权请联系删除

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/48211.html

(0)
上一篇 2024-04-24 16:15
下一篇 2024-04-24 18:45

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信