大家好,欢迎来到IT知识分享网。
本篇文章译自英文文档 Cross Compilation and RPC 作者是 Ziheng Jiang,Lianmin Zheng。更多 TVM 中文文档可访问 →TVM 中文站
本教程介绍了如何在 TVM 中使用 RPC 进行交叉编译和远程设备执行。
利用交叉编译和 RPC,可以实现程序在本地机器编译,在远程设备运行。这个特性在远程设备资源有限时(如在树莓派和移动平台上)尤其有用。本教程将把树莓派作为 CPU 示例,把 Firefly-RK3399 作为 OpenCL 示例进行演示。
在设备上构建 TVM Runtime
首先在远程设备上构建 TVM runtime。
注意 本节和下一节中的所有命令都应在目标设备(例如树莓派)上执行。假设目标设备运行 Linux 系统。
由于在本地机器上只做编译,而远程设备用于运行生成的代码。所以只需在远程设备上构建 TVM runtime。
git clone --recursive https://github.com/apache/tvm tvm cd tvm make runtime -j2
成功构建 runtime 后,要在~/.bashrc文件中设置环境变量。可以用vi ~/.bashrc命令编辑~/.bashrc,在这个文件里添加下面这行代码(假设 TVM 目录在~/tvm中):
export PYTHONPATH=$PYTHONPATH:~/tvm/python
执行source ~/.bashrc来更新环境变量。
在设备上设置 RPC 服务器
在远程设备(本例为树莓派)上运行以下命令来启动 RPC 服务器:
python -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090
看到下面这行提示,则表示 RPC 服务器已成功启动。
INFO:root:RPCServer: bind to 0.0.0.0:9090
在本地机器上声明和交叉编译内核
备注 现在回到本地机器(已经用 LLVM 安装了完整的 TVM)。
在本地机器上声明一个简单的内核:
import numpy as np import tvm from tvm import te from tvm import rpc from tvm.contrib import utils n = tvm.runtime.convert(1024) A = te.placeholder((n,), name="A") B = te.compute((n,), lambda i: A[i] + 1.0, name="B") s = te.create_schedule(B.op)
然后交叉编译内核。对于树莓派 3B,target 是“llvm -mtriple=armv7l-linux-gnueabihf”,但这里用的是“llvm”,使得本教程可以在网页构建服务器上运行。请参阅下面的详细说明。
local_demo = True if local_demo: target = "llvm" else: target = "llvm -mtriple=armv7l-linux-gnueabihf" func = tvm.build(s, [A, B], target=target, name="add_one") # 将 lib 存储在本地临时文件夹 temp = utils.tempdir() path = temp.relpath("lib.tar") func.export_library(path)
备注
要使本教程运行在真正的远程设备上,需要将 local_demo 改为 False,并将 build 中的 target 替换为适合设备的 target 三元组。不同设备的 target 三元组可能不同。例如,对于树莓派 3B,它是 llvm -mtriple=armv7l-linux-gnueabihf;对于 RK3399,它是 llvm -mtriple=aarch64-linux-gnu。
通常,可以在设备上运行 gcc -v 来查询 target,寻找以 Target 开头的行:(尽管它可能仍然是一个松散的配置。)
除了 -mtriple,还可设置其他编译选项,例如:
- -mcpu=<cpuname> 指定生成的代码运行的芯片架构。默认情况这是从 target 三元组推断出来的,并自动检测到当前架构。
- -mattr=a1,+a2,-a3,… 覆盖或控制 target 的指定属性,例如是否启用 SIMD 操作。默认属性集由当前 CPU 设置。要获取可用属性列表,执行:
llc -mtriple=<your device target triple> -mattr=help
这些选项与llc一致。建议设置 target 三元组和功能集,使其包含可用的特定功能,这样我们可以充分利用单板的功能。查看LLVM 交叉编译指南获取有关交叉编译属性的详细信息。
通过 RPC 远程运行 CPU 内核
下面将演示如何在远程设备上运行生成的 CPU 内核。首先,从远程设备获取 RPC 会话:
if local_demo: remote = rpc.LocalSession() else: # 下面是我的环境,将这个换成你目标设备的 IP 地址 host = "10.77.1.162" port = 9090 remote = rpc.connect(host, port)
将 lib 上传到远程设备,然后调用设备的本地编译器重新链接它们。其中 func 是一个远程模块对象。
remote.upload(path) func = remote.load_module("lib.tar") # 在远程设备上创建数组 dev = remote.cpu() a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), dev) # 这个函数将在远程设备上运行 func(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1)
要想评估内核在远程设备上的性能,避免网络开销很重要。time_evaluator返回一个远程函数,这个远程函数多次运行 func 函数,并测试每一次在远程设备上运行的成本,然后返回测试的成本(不包括网络开销)。
time_f = func.time_evaluator(func.entry_name, dev, number=10) cost = time_f(a, b).mean print("%g secs/op" % cost)
输出结果:
1.369e-07 secs/op
通过 RPC 远程运行 OpenCL 内核
远程 OpenCL 设备的工作流程与上述内容基本相同。可以定义内核、上传文件,然后通过 RPC 运行。
备注
树莓派不支持 OpenCL,下面的代码是在 Firefly-RK3399 上测试的。可以按照 教程 为 RK3399 设置 OS 及 OpenCL 驱动程序。
在 rk3399 板上构建 runtime 也需启用 OpenCL。在 TVM 根目录下执行:
cp cmake/config.cmake . sed -i "s/USE_OPENCL OFF/USE_OPENCL ON/" config.cmake make runtime -j4
下面的函数展示了如何远程运行 OpenCL 内核:
def run_opencl(): # 注意:这是 rk3399 板的设置。你需要根据你的环境进行修改 opencl_device_host = "10.77.1.145" opencl_device_port = 9090 target = tvm.target.Target("opencl", host="llvm -mtriple=aarch64-linux-gnu") # 为上面的计算声明 "add one" 创建 schedule s = te.create_schedule(B.op) xo, xi = s[B].split(B.op.axis[0], factor=32) s[B].bind(xo, te.thread_axis("blockIdx.x")) s[B].bind(xi, te.thread_axis("threadIdx.x")) func = tvm.build(s, [A, B], target=target) remote = rpc.connect(opencl_device_host, opencl_device_port) # 导出并上传 path = temp.relpath("lib_cl.tar") func.export_library(path) remote.upload(path) func = remote.load_module("lib_cl.tar") # 运行 dev = remote.cl() a = tvm.nd.array(np.random.uniform(size=1024).astype(A.dtype), dev) b = tvm.nd.array(np.zeros(1024, dtype=A.dtype), dev) func(a, b) np.testing.assert_equal(b.numpy(), a.numpy() + 1) print("OpenCL test passed!")
总结
本教程介绍了 TVM 中的交叉编译和 RPC 功能。
- 在远程设备上设置 RPC 服务器。
- 设置目标设备配置,使得可在本地机器上交叉编译内核。
- 通过 RPC API 远程上传和运行内核。
下载 Python 源代码:tensor_ir_blitz_course.py
下载 Jupyter Notebook:tensor_ir_blitz_course.ipynb
以上就是该文档的全部内容,查看更多 TVM 中文文档,请访问→
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/58275.html