Flink基础入门[通俗易懂]

Flink基础入门[通俗易懂]Flink 概述什么是 FlinkApache Apache Flink 是一个开源的流处理框架,应用于分布式、高性能、高可用的数据流应用程序。

大家好,欢迎来到IT知识分享网。

Flink 概述

什么是 Flink

Apache Apache Flink 是一个开源的流处理框架,应用于分布式、高性能、高可用的数据流应用程序。可以处理有限数据流和无限数据,即能够处理有边界和无边界的数据流。无边界的数据流就是真正意义上的流数据,所以 Flink 是支持流计算的。有边界的数据流就是批数据,所以也支持批处理的。不过 Flink 在流处理上的应用比在批处理上的应用更加广泛,统一批处理和流处理也是 Flink 目标之一。Flink 可以部署在各种集群环境,可以对各种大小规模的数据进行快速计算。

  • 2010~2014Flink 起源于柏林理工大学的研究性项目 Stratosphere
  • 2014 年该项目被捐赠给 Apache 软件基金会
  • 2014 年 12 月 Flink 一跃成为 Apache 软件基金会的顶级项目之一

在德语中,Flink 一词表示快速和灵巧,项目采用一只松鼠的彩色图案作为 logo,这不仅是因为松鼠具有快速和灵巧的特点,还因为柏林的松鼠有一种迷人的红棕色,而 Flink 的松鼠 logo 拥有可爱的尾巴,尾巴的颜色与 Apache 软件基金会的 logo 颜色相呼应,也就是说,这是一只 Apache 风格的松鼠

Flink 的特点

Flink 有如下特点:

  • 批流一体:统一批处理和流处理
  • 分布式:Flink 程序可以运行在分布式环境下
  • 高性能
  • 高可用
  • 准确性:Flink 可以保证数据处理的准确性

Flink 应用场景

Flink 主要应用于流式数据分析场景

  • 实时 ETL

Extraction-Transformation-Loading 的缩写,中文名称为数据抽取、转换和加载.

集成流计算现有的诸多数据通道和 SQL 灵活的加工能力,对流式数据进行实时清晰、归并和结构化处理;同时,对离线数仓进行有效的补充和优化,并为数据实时传输提供可计算通道。

  • 实时报表

实时化采集,加工流式数据存储;实时监控和展现业务、客户各类指标,让数据化运营实时化。

  • 监控预警

对系统和用户行为进行实时监测和分析,以便及时发现危险行为。

  • 在线系统

实时计算各类数据指标,并利用实时结果及时调整在线系统的相关策略,并应用于内容投放、智能推送领域。

Flink 核心组成及生态发展

Flink基础入门[通俗易懂]

Flink 核心组成

  • Deploy 层:
    Flink 支持本地运行、能在独立集群或者在被 YARN 或 Mesos 管理的集群上运行,也能部署在云上
  • Core 层:
    Flink 的核心是分布式流式数据引擎,意味着数据以一次一个事件的形式被处理
  • API 层:
    DataStream、DataSet、Table、SQL API
  • 扩展库:Flink 还包括了用于复杂事件处理、机器学习、图像处理和 Apache Storm 兼容的专用代码库

Flink 生态发展

Flink基础入门[通俗易懂]

1.输入 Connectors(左侧部分)

    • 流处理方式:包含 Kafka、AWS kinesis(实时数据流服务)、RabbitMQ、NIFI(数据管道)、Twitter(API)
    • 批处理方式:包含 HDFS、HBase、Amazon S3(文件系统)、MapR FS(文件系统)、ALLuxio(基于内存的分布式文件系统)

2.中间是 Flink 核心部分

3.输出 Connectors(右侧部分)

    • 流处理方式:包含 Kafka、AWS kinesis(实时数据流服务)、RabbitMQ、NIFI(数据管道)、Cassandra(NoSQL 数据库)、ES、HDFS rolling file(滚动文件)
    • 批处理方式:包含 HBase、HDFS

流处理引擎的技术选型

计算框架对比图

产品

模型

API

保证次数

容错机制

状态管理

延时

吞吐量

storm

Native(数据进入立即处理)

组合式

At-least-once

Record ACKS

Low

Low

Trident

mirco-batching(划分为小批处理)

组合式

Exectly-once

Record ACKs

基于操作(每次操作由一个状态)

Medium

Medium

Spark streaming

mirco-batching

声明式(提供封装后的高阶函数)

Exectly-once

RDD Checkpoint

基于 DStream

Medium

High

Flink

Native

声明式

Exectly-once

Checkpoint

基于操作

Low

Hign

市面上的流处理引擎不止 Flink 一种,其他的比如 Storm、SparkStreaming、Trident 等,如何进行选型,给大家一些建议:

  • 流数据要进行状态管理,选择使用 Trident、Spark Streaming 或者 Flink
  • 消息传递需要保证 At-least-once(至少一次)或者 Exacly-once(仅一次)不能选择 Storm
  • 对于小型独立项目,有低延迟要求,可以选择使用 Storm,更简单
  • 如果项目已经引入了 Spark,实时处理需求可以满足的话,建议直接使用 Spark 中的 Spark Streaming
  • 消息投递要满足 Exactly-once(仅一次),数据量大、有高吞吐、低延迟要求,要进行状态管理或窗口统计,建议使用 Flink

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/6281.html

(0)
上一篇 2022-12-16 20:00
下一篇 2022-12-16 20:20

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信