flink基础_flink开发环境搭建

flink基础_flink开发环境搭建day04_Flink高级API今日目标Flink的四大基石Flink窗口Window操作Flink时间 – TimeFlink水印 – Wat

大家好,欢迎来到IT知识分享网。

day04_Flink高级API

今日目标

  • Flink的四大基石
  • Flink窗口Window操作
  • Flink时间 – Time
  • Flink水印 – Watermark机制
  • Flink的state状态管理-keyed state 和 operator state

Flink的四大基石

  • Checkpoint – 检查点, 分布式一致性,解决数据丢失,故障恢复数据, 存储的是全局的状态, 持久化HDFS分布式文件系统中
  • State – 状态,分为Managed state(托管状态) 和 Rawed state (原始状态); 数据结构的角度来说 ValueState、ListState、MapState,BroadcastState
  • Time – 时间 , EventTime事件时间、Ingestion摄取时间、Process处理时间
  • Window – 窗口,时间窗口 和 计数窗口, TimeWindow 、 countwindow、 sessionwindow

Window操作

  • 为什么需要 Window – 窗口
  • 数据是动态的, 无界的, 需要窗口划定范围,将无界数据转换成有界、静态的数据进行计算。

Window分类

  • time – 时间进行分类
    • 时间的窗口级别, 一天,一小时,一分钟
    • 用的比较多 滚动窗口 – tumbling window 和 滑动窗口 – sliding window
    • 滚动窗口 ,窗口时间和滑动时间一样就是滚动时间
    • 滑动窗口, 滑动的时间小于窗口的时间;
    • 会话窗口 – session windows
  • count – 计数进行分类
    • 滚动计数窗口
    • 滑动计数窗口

如何使用

flink基础_flink开发环境搭建

windows的案例

时间窗口需求

  • 每5秒钟统计一次,最近5秒钟内,各个路口通过红绿灯汽车的数量–基于时间的滚动窗口
  • 每5秒钟统计一次,最近10秒钟内,各个路口通过红绿灯汽车的数量–基于时间的滑动窗口
package cn.itcast.flink.basestone;import lombok.AllArgsConstructor;import lombok.Data;import lombok.NoArgsConstructor;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.windowing.assigners.SlidingProcessingTimeWindows;import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;import org.apache.flink.streaming.api.windowing.time.Time;/*** Author itcast* Date 2021/6/18 15:00* 开发步骤* 1. 将 字符串 9,3 转换成 CartInfo* 2. 使用 滚动窗口, 滑动窗口* 3. 分组和聚合* 4. 打印输出* 5. 执行环境*/public class WindowDemo01 {public static void main(String[] args) throws Exception {//1.env 创建流执行环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);//2.读取 socket 数据源DataStreamSource<String> source = env.socketTextStream("192.168.88.161", 9999);//3.将9,3转为CartInfo(9,3)DataStream<CartInfo> mapDS = source.map(new MapFunction<String, CartInfo>() {@Overridepublic CartInfo map(String value) throws Exception {String[] kv = value.split(",");return new CartInfo(kv[0], Integer.parseInt(kv[1]));}});//4.按照 sensorId 分组并划分滚动窗口为5秒,在窗口上求和// Tumbling(滚动)Processing(处理)TimeWindows(时间窗口)//需求1:每5秒钟统计一次,最近5秒钟内,各个路口/信号灯通过红绿灯汽车的数量SingleOutputStreamOperator<CartInfo> result1 = mapDS.keyBy(t -> t.sensorId).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).sum("count");//需求2:每5秒钟统计一次,最近10秒钟内,各个路口/信号灯通过红绿灯汽车的数量SingleOutputStreamOperator<CartInfo> result2 = mapDS.keyBy(t -> t.sensorId).window(SlidingProcessingTimeWindows.of(Time.seconds(10),Time.seconds(5))).sum("count");//5.打印输出//result1.print();result2.print();//6.executeenv.execute();}@Data@AllArgsConstructor@NoArgsConstructorpublic static class CartInfo {private String sensorId;//信号灯idprivate Integer count;//通过该信号灯的车的数量}}

IT知识分享网

计数窗口需求

  • 需求1:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现5次进行统计–基于数量的滚动窗口
  • 需求2:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现3次进行统计–基于数量的滑动窗口
IT知识分享网package cn.itcast.flink.basestone;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Author itcast
* Date 2021/6/18 15:46
* Desc TODO
*/
public class CountWindowDemo01 {
public static void main(String[] args) throws Exception {
//1.env 创建流执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//2.读取 socket 数据源
DataStreamSource<String> source = env.socketTextStream("192.168.88.161", 9999);
//3.将9,3转为CartInfo(9,3)
DataStream<WindowDemo01.CartInfo> mapDS = source.map(new MapFunction<String, WindowDemo01.CartInfo>() {
@Override
public WindowDemo01.CartInfo map(String value) throws Exception {
String[] kv = value.split(",");
return new WindowDemo01.CartInfo(kv[0], Integer.parseInt(kv[1]));
}
});
// * 需求1:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现5次进行统计--基于数量的滚动窗口
// //countWindow(long size, long slide)
SingleOutputStreamOperator<WindowDemo01.CartInfo> result1 = mapDS.keyBy(t -> t.getSensorId())
.countWindow(5)
.sum("count");
// * 需求2:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现3次进行统计--基于数量的滑动窗口
SingleOutputStreamOperator<WindowDemo01.CartInfo> result2 = mapDS.keyBy(t -> t.getSensorId())
.countWindow(5, 3)
.sum("count");
//打印输出
//result1.print();
result2.print();
//执行环境
env.execute();
}
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class CartInfo {
private String sensorId;//信号灯id
private Integer count;//通过该信号灯的车的数量
}
}
package cn.itcast.flink.basestone;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Author itcast
* Date 2021/6/18 15:46
* Desc TODO
*/
public class CountWindowDemo01 {
public static void main(String[] args) throws Exception {
//1.env 创建流执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//2.读取 socket 数据源
DataStreamSource<String> source = env.socketTextStream("192.168.88.161", 9999);
//3.将9,3转为CartInfo(9,3)
DataStream<WindowDemo01.CartInfo> mapDS = source.map(new MapFunction<String, WindowDemo01.CartInfo>() {
@Override
public WindowDemo01.CartInfo map(String value) throws Exception {
String[] kv = value.split(",");
return new WindowDemo01.CartInfo(kv[0], Integer.parseInt(kv[1]));
}
});
// * 需求1:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现5次进行统计--基于数量的滚动窗口
// //countWindow(long size, long slide)
SingleOutputStreamOperator<WindowDemo01.CartInfo> result1 = mapDS.keyBy(t -> t.getSensorId())
.countWindow(5)
.sum("count");
// * 需求2:统计在最近5条消息中,各自路口通过的汽车数量,相同的key每出现3次进行统计--基于数量的滑动窗口
SingleOutputStreamOperator<WindowDemo01.CartInfo> result2 = mapDS.keyBy(t -> t.getSensorId())
.countWindow(5, 3)
.sum("count");
//打印输出
//result1.print();
result2.print();
//执行环境
env.execute();
}
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class CartInfo {
private String sensorId;//信号灯id
private Integer count;//通过该信号灯的车的数量
}
}

Flink – Time 和 watermark

Time – 时间

flink基础_flink开发环境搭建

水印机制 – watermark

  • 主要解决数据延迟问题
  • 水印(时间戳) = 事件时间 – 允许最大的延时时间
  • 窗口触发条件
  • 水印时间 >= 窗口的结束时间 触发计算
flink基础_flink开发环境搭建

需求

有订单数据,格式为: (订单ID,用户ID,时间戳/事件时间,订单金额)

要求每隔5s, 计算5秒内,每个用户的订单总金额

并添加Watermark来解决一定程度上的数据延迟和数据乱序(最多延时 3 秒)问题。

package cn.itcast.flink.basestone;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.time.Duration;
import java.util.Random;
import java.util.UUID;
/**
* Author itcast
* Date 2021/6/18 16:54
* Desc TODO
*/
public class WatermarkDemo01 {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置属性 ProcessingTime , 新版本 默认设置 EventTime
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.Source 创建 Order 类 orderId:String userId:Integer money:Integer eventTime:Long
DataStreamSource<Order> source = env.addSource(new SourceFunction<Order>() {
boolean flag = true;
Random rm = new Random();
@Override
public void run(SourceContext<Order> ctx) throws Exception {
while (flag) {
ctx.collect(new Order(
UUID.randomUUID().toString(),
rm.nextInt(3),
rm.nextInt(101),
//模拟生成 Order 数据 事件时间=当前时间-5秒钟随机*1000
System.currentTimeMillis() - rm.nextInt(5) * 1000
));
Thread.sleep(1000);
}
}
@Override
public void cancel() {
flag = false;
}
});
//3.Transformation
//-告诉Flink要基于事件时间来计算!
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);//新版本默认就是EventTime
DataStream<Order> result = source.assignTimestampsAndWatermarks(
WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((element, recordTimestamp) -> element.eventTime)
)
//-分配水印机制,最多延迟3秒,告诉Flink数据中的哪一列是事件时间,因为Watermark = 当前最大的事件时间 - 最大允许的延迟时间或乱序时间
//代码走到这里,就已经被添加上Watermark了!接下来就可以进行窗口计算了
//要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
.keyBy(t -> t.userId)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.sum("money");
//4.Sink
result.print();
//5.execute
env.execute();
}
//创建订单类
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class Order{
private String orderId;
private Integer userId;
private Integer money;
private Long eventTime;
}
}
自定义重写接口实现水印机制
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import java.time.Duration;
import java.util.Random;
import java.util.UUID;
/**
* Author itcast
* Date 2021/6/18 16:54
* Desc TODO
*/
public class WatermarkDemo01 {
public static void main(String[] args) throws Exception {
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置属性 ProcessingTime , 新版本 默认设置 EventTime
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.Source 创建 Order 类 orderId:String userId:Integer money:Integer eventTime:Long
DataStreamSource<Order> source = env.addSource(new SourceFunction<Order>() {
boolean flag = true;
Random rm = new Random();
@Override
public void run(SourceContext<Order> ctx) throws Exception {
while (flag) {
ctx.collect(new Order(
UUID.randomUUID().toString(),
rm.nextInt(3),
rm.nextInt(101),
//模拟生成 Order 数据 事件时间=当前时间-5秒钟随机*1000
System.currentTimeMillis() - rm.nextInt(5) * 1000
));
Thread.sleep(1000);
}
}
@Override
public void cancel() {
flag = false;
}
});
//3.Transformation
//-告诉Flink要基于事件时间来计算!
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);//新版本默认就是EventTime
DataStream<Order> result = source.assignTimestampsAndWatermarks(
WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((element, recordTimestamp) -> element.eventTime)
)
//-分配水印机制,最多延迟3秒,告诉Flink数据中的哪一列是事件时间,因为Watermark = 当前最大的事件时间 - 最大允许的延迟时间或乱序时间
//代码走到这里,就已经被添加上Watermark了!接下来就可以进行窗口计算了
//要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
.keyBy(t -> t.userId)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.sum("money");
//4.Sink
result.print();
//5.execute
env.execute();
}
//创建订单类
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class Order{
private String orderId;
private Integer userId;
private Integer money;
private Long eventTime;
}
}
  • 一秒钟生成一条订单数据, 根据用户进行统计总金额,每5秒钟计算5秒中窗口, 允许最大的延时时间是 3秒; 如果超过了 3秒时间,再来的数据存储到 outputTag ,打印输出正常的数据和严重迟到的数据
IT知识分享网package cn.itcast.flink.basestone;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.OutputTag;
import java.time.Duration;
import java.util.Random;
import java.util.UUID;
/**
* Author itcast
* Date 2021/6/18 17:47
* Desc TODO
*/
public class LatenessWatermarkDemo {
public static void main(String[] args) throws Exception {
//此时间的将严重延迟的数据保存到 outputTag 中。
/// 创建 outputTag 用于存储严重延迟的数据 数据类型为 Order
//4.Sink 打印正常和严重延迟的数据
//1.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//设置属性 ProcessingTime , 新版本 默认设置 EventTime
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
//2.Source 创建 Order 类 orderId:String userId:Integer money:Integer eventTime:Long
DataStreamSource<Order> source = env.addSource(new SourceFunction<Order>() {
boolean flag = true;
Random rm = new Random();
@Override
public void run(SourceContext<Order> ctx) throws Exception {
while (flag) {
ctx.collect(new Order(
UUID.randomUUID().toString(),
rm.nextInt(3),
rm.nextInt(101),
//模拟生成 Order 数据 事件时间=当前时间-5秒钟随机*1000
System.currentTimeMillis() - rm.nextInt(10) * 1000
));
//Thread.sleep(1000);
}
}
@Override
public void cancel() {
flag = false;
}
});
//定义一个允许最大的延时存储的数据 tag
OutputTag<Order> seriousLateOrder = new OutputTag<>("SeriousLateOrder", TypeInformation.of(Order.class));
//3.Transformation
//-告诉Flink要基于事件时间来计算!
//env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);//新版本默认就是EventTime
SingleOutputStreamOperator<Order> result = source.assignTimestampsAndWatermarks(
WatermarkStrategy.<Order>forBoundedOutOfOrderness(Duration.ofSeconds(3))
.withTimestampAssigner((element, recordTimestamp) -> element.eventTime)
)
//-分配水印机制,最多延迟3秒,告诉Flink数据中的哪一列是事件时间,因为Watermark = 当前最大的事件时间 - 最大允许的延迟时间或乱序时间
//代码走到这里,就已经被添加上Watermark了!接下来就可以进行窗口计算了
//要求每隔5s,计算5秒内(基于时间的滚动窗口),每个用户的订单总金额
.keyBy(t -> t.userId)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
.allowedLateness(Time.seconds(3))
.sideOutputLateData(seriousLateOrder)
.sum("money");
//4.Sink
result.print("正常数据和不严重迟到的数据");
result.getSideOutput(seriousLateOrder).print();
//5.execute
env.execute();
}
//创建订单类
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class Order{
private String orderId;
private Integer userId;
private Integer money;
private Long eventTime;
}
}

Flink状态管理

  • 状态就是基于 key 或者 算子 operator 的中间结果
  • Flink state 分为两种 : Managed state – 托管状态 , Raw state – 原始状态
  • Managed state 分为 两种:keyed state 基于 key 上的状态支持的数据结构 valueState listState mapState broadcastStateoperator state 基于操作的状态字节数组, ListState

Flink keyed state 案例

  • 需求
  • 使用KeyedState中的ValueState获取数据中的最大值(实际中直接使用maxBy即可),使用值状态自定义,
  • <hello,1>
  • <hello,3>
  • <hello,2>
  • 输入Tuple2<String/单词/, Long/长度/> 输出 Tuple3<String/单词/, Long/长度/, Long/历史最大值/> 类型
  • 开发
package cn.itcast.flink.state;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Author itcast
* Date 2021/6/21 8:34
* Desc TODO
*/
public class KeyedStateDemo {
public static void main(String[] args) throws Exception {
//1.env 设置并发度为1
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//2.Source 参看课件 <城市,次数> => <城市,最大次数>
DataStreamSource<Tuple2<String, Long>> tupleDS = env.fromElements(
Tuple2.of("北京", 1L),
Tuple2.of("上海", 2L),
Tuple2.of("北京", 6L),
Tuple2.of("上海", 8L),
Tuple2.of("北京", 3L),
Tuple2.of("上海", 4L)
);
//3.Transformation
//使用KeyState中的ValueState获取流数据中的最大值(实际中直接使用maxBy即可)
//实现方式1:直接使用maxBy--开发中使用该方式即可
SingleOutputStreamOperator<Tuple2<String, Long>> result1 = tupleDS.keyBy(t -> t.f0)
//min只会求出最小的那个字段,其他的字段不管
//minBy会求出最小的那个字段和对应的其他的字段
//max只会求出最大的那个字段,其他的字段不管
//maxBy会求出最大的那个字段和对应的其他的字段
.maxBy(1);
//实现方式2:通过managed state输入的state
//3.1.先根据字符串f0分组然后进行 map 操作,将Tuple2<String/*城市*/, Long/*次数*/> 输出 Tuple3<String/*城市*/, Long/*次数*/, Long/*历史最大值*/>
//
SingleOutputStreamOperator<Tuple3<String, Long, Long>> result2 = tupleDS
.keyBy(t->t.f0)
.map(new RichMapFunction<Tuple2<String, Long>, Tuple3<String/*城市*/, Long/*次数*/, Long/*历史最大值*/>>() {
ValueState<Long> maxState = null;
//-1.定义值类型的状态用来存储最大值
//3.2.重写 RichMapFunction 的open 方法
@Override
public void open(Configuration parameters) throws Exception {
//-2.定义状态描述符
//-3.从当前上下文获取内存中的状态值
ValueStateDescriptor maxStateDesc = new ValueStateDescriptor("maxState", Long.class);
maxState = getRuntimeContext().getState(maxStateDesc);
}
//3.3.重写 map 方法
//-4.获取state中历史最大值value和当前元素的最大值并比较
@Override
public Tuple3<String, Long, Long> map(Tuple2<String, Long> value) throws Exception {
//内存中state的存储的最大值
Long maxValue = maxState.value();
//当前的值
Long curValue = value.f1;
if (maxValue == null || curValue > maxValue) {
maxState.update(curValue);
return Tuple3.of(value.f0, value.f1, curValue);
} else {
return Tuple3.of(value.f0, value.f1, maxValue);
}
}
});
//-5.如果当前值大或历史值为空更新状态;返回Tuple3元祖结果
//4.Sink 打印输出
//result1.print();
result2.print();
//5.execute 执行环境
env.execute();
}
}

Flink operator state 案例

  • 需求
  • 使用ListState存储offset模拟消费Kafka的offset维护
  • 实现
package cn.itcast.flink.state;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.runtime.state.FunctionInitializationContext;
import org.apache.flink.runtime.state.FunctionSnapshotContext;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.util.Iterator;
/**
* Author itcast
* Date 2021/6/21 9:18
* Desc TODO
*/
public class OperatorStateDemo {
public static void main(String[] args) throws Exception {
//1.创建流环境,便于观察设置并行度为 1
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
//2.开启checkpoint ,并将状态保存到 file:///D:/chk ,先开启checkpoint ,state管理
env.enableCheckpointing(1000);
env.setStateBackend(new FsStateBackend("file:///D:/chk"));
//3.设置checkpoint的配置 外部chk,仅一次语义等
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//4.开启重启策略 3秒钟尝试重启3次
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3,3000));
//5.添加数据源比如 MyMonitorKafkaSource , 实例化创建 MyMonitorKafkaSource
DataStreamSource<String> source = env.addSource(new MyMonitorKafkaSource());
//6.打印输出
source.print();
//7.执行
env.execute();
}
//创建 MyMonitorKafkaSource 继承 RichParallelSourceFunction<String> 并实现 CheckpointedFunction
public static class MyMonitorKafkaSource extends RichParallelSourceFunction<String>
implements CheckpointedFunction{
//重写initializeState方法 ListStateDescriptor 状态描述和通过context获取 offsetState
ListState<Long> offsetState = null;
boolean flag = true;
Long offset = 0L;
@Override
public void initializeState(FunctionInitializationContext context) throws Exception {
ListStateDescriptor<Long> offsetStateDesc = new ListStateDescriptor<>("offsetState", Long.class);
offsetState = context.getOperatorStateStore().getListState(offsetStateDesc);
}
//重写run方法 读取出 offset 并 循环读取offset+=1,拿到执行的核心编号,输出(核编号和offset),一秒一条,每5条模拟一个异常
@Override
public void run(SourceContext<String> ctx) throws Exception {
Iterator<Long> iterator = offsetState.get().iterator();
if(iterator.hasNext()){
offset = iterator.next();
}
while(flag){
offset = offset + 1;
//处理 CPU 核心Index
int idx = getRuntimeContext().getIndexOfThisSubtask();
System.out.println("index:"+idx+" offset:"+offset);
Thread.sleep(1000);
if(offset % 5 ==0){
System.out.println("当前程序出错了....");
throw new Exception("程序出BUG...");
}
}
}
//重写cancel方法
@Override
public void cancel() {
flag = false;
}
//重写snapshotState方法 , 清空 offsetState ,并将最新的offset添加进去
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
offsetState.clear();
offsetState.add(offset);
}
}
}
IndexOfThisSubtask(); System.out.println("index:"+idx+" offset:"+offset); Thread.sleep(1000); if(offset % 5 ==0){ System.out.println("当前程序出错了...."); throw new Exception("程序出BUG..."); } } } //重写cancel方法 @Override public void cancel() { flag = false; }
//重写snapshotState方法 , 清空 offsetState ,并将最新的offset添加进去
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception {
offsetState.clear();
offsetState.add(offset);
}
}
}

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/6293.html

(0)
上一篇 2022-12-14 22:56
下一篇 2022-12-14 23:00

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信