大家好,欢迎来到IT知识分享网。
射频绝缘体上硅材料(SOI)和器件的现状和趋势
射频 (RF) 绝缘体上硅 (SOI) 是当今多种前端模块集成电路的主流技术。富陷阱 SOI 衬底在低插入损耗和高线性方面的高质量是其商业成功的根源。
在过去十年中,绝缘体上硅 (SOI) MOSFET 技术已经展示了其在高频商业应用中的潜力,突破了 CMOS 技术的极限。
RF 集成电路 (IC) 的性能不仅取决于有源器件(即晶体管)的模拟和高频特性,还取决于后端生产线工艺的质量,该工艺决定了互连线上的损耗和无源元件(如电感器和可调电容器)的品质因数,以及 RF IC 所在衬底基板的电磁特性。
RF SOI 衬底的当前性能和研究状况
衬底损耗和串扰仍然是在基于 Si 的技术中为 RF 应用设计高性能 IC 的挑战。1997 年,业界首次展示了高电阻率 (HR) SOI 衬底材料的 RF 性能,表明HR SOI 衬底在降低 RF 损耗以及 Si 基衬底中的串扰方面的巨大潜力。在此之前,科学界认为 Si 基衬底是 RF IC 工作的限制和阻碍因素。2000 年,Raskin 教授的研究团队取得了重大发现,使 RF-SOI 成功进入当今市场。2005 年,通过对高电阻率 SOI 衬底的埋层氧化物 (BOX) 下方的硅表面进行改性,可以创建有效电阻率高达 10 k欧姆.cm 的 HR SOI 衬底 ,这种高电阻率特性使得在完整的 CMOS 工艺后得以保留,同时意味着共面波导 (CPW) 传输线上的射频插入损耗非常低(1 GHz 时 < 0.15 dB/mm),纯电容串扰与石英基板类似。
RF-SOI技术研究论文的发表情况
RF-eSI-SOI 衬底实际上可以被视为无损 Si 基衬底。除了开关之外,RF-eSI-SOI 技术还为前端模块 (FEM) 空间以及更复杂的混合信号片上系统 (SoC) 中的进一步系统集成开辟了道路。 RF-SOI mmW(毫米波) 产品,面向 5G、卫星通信、汽车雷达、WiGig、回程等应用中;下图是相关研究论文的发表情况:
关于RF-SOI研究论文的发表情况排名
从发表的论文数量来看,法国的鲁汶天主教大学和我国的杭州电子科技大学在该领域的发表的论文数比较多:
研究机构名称 |
研究机构名称 |
发表的关于RF-SOI技术的论文数量 |
Université catholique de Louvain |
鲁汶天主教大学 |
20 |
Hangzhou Dianzi University |
杭州电子科技大学 |
12 |
GlobalFoundries |
GlobalFoundries |
9 |
Infineon Technologies |
英飞凌科技 |
7 |
STMicroelectronics |
意法半导体 |
7 |
Auburn University |
奥本大学 |
5 |
Dalian University of Technology |
大连理工大学 |
4 |
French Alternative Energies and Atomic Energy Commission |
法国替代能源和原子能委员会 |
4 |
IBM |
IBM |
4 |
University of California, Berkeley |
加州大学伯克利分校 |
4 |
University of Erlangen-Nuremberg |
埃尔朗根-纽伦堡大学 |
4 |
Centre national de la recherche scientifique |
法国国家科学研究中心 |
3 |
Soitec |
Soitec |
3 |
University of Grenoble |
格勒诺布尔大学 |
3 |
Agency for Science, Technology and Research |
法国科学、技术和研究机构 |
2 |
杭州电子科技大学在该领域的发表的论文统计:
论文标题 |
发表时间 |
作者 |
研究领域 |
An improved model for substrate in RF SOI MOSFET varactor |
2016 |
Wenjun Li; Xiaochuan Chen; Jun Liu |
Engineering; Varicap; Overvoltage; Transistor; Equivalent circuit; Electronic engineering; MOSFET; Capacitance; Silicon on insulator; Process variable |
Forward block characteristic of a novel anti-ESD RF SOI LIGBT with a buried P-type layer |
2011 |
Haipeng Zhang; R. S. Qi; W. L. Zhao; H. F. Zhang; Guohua Liu; Dejun Wang; Xiaoyan Niu; Mi Lin; Liyan Xu |
Breakdown voltage; Electrical engineering; Materials science; Electrostatic discharge; Block (telecommunications); Layer (electronics); Forward voltage; Buried oxide; Optoelectronics; Silicon on insulator; Electric potential |
An accurate large-signal model for RF SOI LDMOS including self-heating effect |
2008 |
Huang Wang; Lingling Sun; Zhiping Yu; Jun Liu |
Engineering; Dissipation; Power (physics); Avalanche effect; Equivalent circuit; Electronic engineering; Large-signal model; LDMOS; Substrate (electronics); Electronic circuit simulation |
MOS Model 20 Based RF-SOI LDMOS Large-Signal Modeling |
2008 |
RF Circuits |
Engineering; Dissipation; Power (physics); Avalanche effect; Equivalent circuit; Electronic engineering; Large-signal model; Verilog-A; LDMOS; Electronic circuit simulation |
Investigation of Geometry Dependence of Thermal Resistance and Capacitance in RF SOI MOSFETs |
2018 |
Zhanfei Chen; Lingling Sun; Jun Liu; Guodong Su; Wenyong Zhou |
Thermal mass; Thermal resistance; Electrical impedance; Circuit design; Materials science; Equivalent circuit; Geometry; MOSFET; Capacitance; Silicon on insulator |
An improved nonlinear empirical model applied to RF SOI LDMOSFET |
2007 |
Jia He; Lingling Sun; Jun Liu; Wenjun Li; Yanming Wu; Wenjie Xu |
Engineering; Nonlinear system; Scattering parameters; Electronic engineering; MOSFET; Soi ldmos; Capacitance; Gate length; Silicon on insulator |
Vertical gate RF SOI LIGBT without latch-up susceptibility |
2009 |
Haipeng Zhang; Buchun Su; Lingling Sun; Dejun Wang |
Electrical engineering; Logic gate; Very-large-scale integration; Materials science; Current density; CMOS; Silicon on insulator; Radio frequency; Anode |
Forward block characteristic of a novel RF SOI LDMOS with a buried P-type layer |
2010 |
S.G. Xu; Haipeng Zhang; Dejun Wang; Guohua Liu; Xiaoyan Niu; Mi Lin; Liyan Xu |
Breakdown voltage; Electrical engineering; Materials science; Block (telecommunications); Layer (electronics); Forward voltage; Buried oxide; Soi ldmos; LDMOS; Optoelectronics; Silicon on insulator |
Four-Port Network Parameters Extraction Method for Partially Depleted SOI with Body-Contact Structure |
2016 |
Jun Liu; Yuping Huang; Kai Lu |
Electrical engineering; Engineering; Equivalent circuit; Electronic engineering; Terminal (electronics); MOSFET; Model parameter; Model extraction; Body contact; Extraction methods; Silicon on insulator |
Design and Simulation of RF SOI LDMOS Power Amplifier |
2009 |
YU Li-yang; RF Circuits |
Electrical engineering; Engineering; Power-added efficiency; Amplifier; Scattering parameters; RF power amplifier; Electronic engineering; Soi ldmos; LDMOS; Linear amplifier; dBm |
The Research of Large-signal Model for RF LDMOSFETs |
2009 |
LV Shao-yi |
Electrical engineering; Scattering parameters; RF power amplifier; Large-signal model; Character (mathematics); Nonlinear model; Soi ldmos; A determinant; LDMOS; Computer science |
Vertical gate RF SOI LIGBT for SPICs with significantly improved latch-up immunity |
2011 |
Haipeng Zhang; Ruisheng Qi; Liang Zhang; Buchun Su; Dejun Wang |
Breakdown voltage; Electrical engineering; Current (fluid); Voltage; Process simulation; Materials science; Current density; Snapback; Orders of magnitude (voltage); Optoelectronics; Silicon on insulator |
RF-SOI技术领域最活跃的研究者—鲁汶天主教大学的Jean-Pierre Raskin教授
RF-SOI 创新者Pierre Raskin 教授(右)因其在 RF-SOI 领域做出的改变行业的工作而获得 Blondel 奖章:RF-SOI 衬底专家 Jean-Pierre Raskin和他的团队由于推动了用于 RF 应用的最先进晶圆衬底技术的发展,在伦敦大学学院被授予电子领域最高荣誉之一:久负盛名的 Blondel 奖章。他开创的技术现在几乎应用于全球所有智能手机,并被全球几乎所有 RF 代工厂所采用。早在 2003 年,Raskin 博士的团队就首次展示了一种全新的激进方法(当时被称为“富陷阱”),用于提高高电阻率 (HR) SOI 衬底的 RF 性能。随后,UCL(比利时鲁汶天主教大学) 和 Soitec 的团队共同合作进行工业化生产,使其在 RF 应用的 SOI 衬底中实现商业化。Soitec 最终开发出一种名为 eSI 的新型晶圆衬底,用于增强信号完整性,并且取得了巨大的成功。事实上,Soitec 估计,每个季度使用其 eSI 晶圆生产的 RF 器件超过 10 亿台。
Jean-Pierre Raskin教授发表的关于RF-SOI技术的研究论文
RF-SOI 创新者 JP Raskin发表的与RF-SOI技术有关的论文统计:
论文标题 |
发表时间 |
关键研究领域 |
A new fully-depleted SOI MOSFET macro-model valid from DC to RF |
2001 |
EKV MOSFET Model; Engineering; Communication channel; Macro; Transistor; Equivalent circuit; Electronic engineering; MOSFET; Silicon on insulator |
RF SOI CMOS technology on 1st and 2nd generation trap-rich high resistivity SOI wafers |
2017 |
Electrical engineering; Wafer; Crosstalk; Harmonics; Materials science; Capacitive sensing; High resistivity; Coplanar waveguide; Signal integrity; Optoelectronics; Silicon on insulator |
Compact small-signal model for RF FinFETs |
2012 |
Electrical engineering; Engineering; Operating point; Equivalent circuit; Electronic engineering; MOSFET; Transconductance; Spice; Small-signal model; Verilog-A; Radio frequency |
RF SOI CMOS technology on 1st and 2nd generation trap-rich high resistivity SOI wafers |
2016 |
Electrical engineering; Wafer; Materials science; Trap (computing); Active devices; High resistivity; Soi cmos technology; High resistivity silicon; Coplanar waveguide; Optoelectronics; Silicon on insulator |
RF SOI CMOS technology on commercial trap-rich high resistivity SOI wafer |
2012 |
Electrical engineering; Wafer; Materials science; Trap (computing); MOSFET; High resistivity; Soi cmos technology; Semiconductor technology; CMOS; Optoelectronics; Silicon on insulator |
Deep-submicrometer DC-to-RF SOI MOSFET macro-model |
2001 |
Transistor; Materials science; Equivalent circuit; Electronic engineering; MOSFET; Capacitance; Optoelectronics; Silicon on insulator; Cutoff frequency; Radio frequency; Propagation delay |
(Invited) Current Status and Trends in RF Silicon-on-Insulator Material and Device |
2018 |
Silicon on insulator; Electrical engineering; Amplifier; MOSFET; CMOS; Low-noise amplifier; Optoelectronics; Transistor; Radio frequency; Materials science; Engineering; Telecommunications; Engineering physics; Silicon; Voltage |
Compact On-Wafer Test Structures for Device RF Characterization |
2017 |
Electrical engineering; Physics; Electric power transmission; Wafer; Transistor; Scattering parameters; MOSFET; Coplanar waveguide; Optoelectronics; Silicon on insulator; Radio frequency |
FinFET and UTB/B for RF SOI communication systems |
2016 |
Electrical engineering; Voltage; Transistor; Materials science; MOSFET; Transconductance; Integrated circuit; Silicon on insulator; Cutoff frequency; Linearity |
Fully Depleted SOI technologies from digital to RF and beyond |
2018 |
Electrical engineering; Transistor; MOSFET; Wideband; Computer science; Silicon on insulator; Cutoff frequency; Temperature measurement; Radio frequency; Mobile telephony |
SOI technologies for RF and millimeter-wave integrated circuits |
2021 |
Transistor; Materials science; Line (electrical engineering); MOSFET; Substrate (electronics); Optoelectronics; Integrated circuit; Silicon on insulator; Wireless; Radio frequency |
(Invited) SOI Technologies for RF and Millimeter Wave Applications |
2019 |
Silicon on insulator; Optoelectronics; Radio frequency; Electrical engineering; Materials science; Wafer; CMOS; Silicon; RF front end; Transistor; Engineering physics; Electronic engineering; Engineering; Voltage |
High resistivity SOI wafer for mainstream RF System-on-Chip |
2015 |
Electrical engineering; Wafer; LTE Advanced; Electronic engineering; Rf system; Computer science; Signal integrity; Silicon on insulator; Radio frequency; Bandwidth (signal processing); Mobile telephony |
Ultra Low-Loss Si Substrate for On-Chip UWB GHz Antennas |
2019 |
Permittivity; Materials science; RF power amplifier; Coplanar waveguide; Substrate (electronics); Optoelectronics; Silicon on insulator; Radio frequency; Transmission (telecommunications); Dissipation factor |
Deep-submicron drain current to radio frequency silicon on insulator metal oxide semiconductor field-effect transistor macromodel for designing microwave circuits |
2002 |
Electrical engineering; Field-effect transistor; Transistor; Materials science; Equivalent circuit; MOSFET; Microwave; CMOS; Optoelectronics; Silicon on insulator; Radio frequency |
SOI Technologies for RF and Millimeter-Wave Applications |
2021 |
Electrical engineering; Electronic circuit; Finite element method; Wafer; Transistor; Trap (computing); Surface conduction; Computer science; Extremely high frequency; Silicon on insulator |
The Concept of a Large-scale Subharmonic Coherent Detector Array at 600 GHz |
2023 |
Subharmonic; Detector; Scale (ratio); Computer science; Physics; Optoelectronics; Optics; Nonlinear system; Quantum mechanics |
Small and large-signal wideband characterization of RF SOI technology |
2017 |
Signal; Materials science; Wideband; Characterization (materials science); Optoelectronics; Silicon on insulator |
VLSI-DAT – Engineered substrates: The foundation to meet current and future RF requirements |
2015 |
Electrical engineering; LTE Advanced; Electronic engineering; Smart phone; Wireless data; Computer science; Signal integrity; Silicon on insulator; Radio frequency; Bandwidth (signal processing) |
Fully Depleted SOI Technology for Millimeter-Wave Integrated Circuits |
2022 |
Silicon on insulator; MOSFET; Amplifier; Electrical engineering; Electronic circuit; Transistor; Optoelectronics; Extremely high frequency; Materials science; Electronic engineering; CMOS; Engineering; Silicon; Telecommunications; Voltage |
Deep-submicron DC to RF SOI MOSFET macro-model for designing non-linear RF circuits |
2001 |
Electrical engineering; Electronic circuit; Nonlinear system; Macro; Materials science; Electronic engineering; MOSFET; Silicon on insulator |
Analogue and RF performances of Fully Depleted SOI MOSFET |
2019 |
Transistor; Materials science; Line (electrical engineering); MOSFET; Cryogenic temperature; Substrate (electronics); Optoelectronics; Integrated circuit; Silicon on insulator; Linearity |
FD-SOI and RF-SOI technologies for 5G |
2024 |
Silicon on insulator; Materials science; Optoelectronics; Electrical engineering; Engineering; Silicon |
RF SOI dans 100% de nos smartphones |
2015 |
Die (integrated circuit); Electrical engineering; Engineering; Electronics; Wafer; Transistor; Context (language use); Mobile Web; Integrated circuit; Silicon on insulator |
Engineered substrates: The foundation to meet current and future RF requirements |
2015 |
Radio frequency; Bandwidth (computing); Wireless; Silicon on insulator; Electrical engineering; Computer science; Electronic engineering; Telecommunications; Engineering; Materials science; Silicon; Optoelectronics |
被引用最多次的RF-SOI研究论文的排名情况
被引用最多次的RF-SOI研究论文的排名表:
引用次数最多的论文标题 |
发表的时间 |
引用的次数 |
BAG2: A process-portable framework for generator-based AMS circuit design |
2018 |
75 |
Analysis of hot-carrier degradation in a SOI LDMOS transistor with a steep retrograde drift doping profile |
2005 |
32 |
Improvements in SOI technology for RF switches |
2015 |
26 |
CICC – BAG2: A process-portable framework for generator-based AMS circuit design |
2019 |
24 |
A numerical study of field plate configurations in RF SOI LDMOS transistors |
2006 |
22 |
ESSCIRC – In-band full-duplex transceiver technology for 5G mobile networks |
2015 |
20 |
UTSi CMOS: A Complete RF SOI Solution |
2000 |
20 |
150-GHz RF SOI-CMOS Technology in Ultrathin Regime on Organic Substrate |
2011 |
19 |
Radio-frequency and low noise characteristics of SOI technology on plastic for flexible electronics |
2013 |
19 |
Continuous True-Time Delay Phase Shifter Using Distributed Inductive and Capacitive Miller Effect |
2019 |
18 |
RF SOI CMOS technology on commercial trap-rich high resistivity SOI wafer |
2012 |
18 |
ISSCC – 2.1 mm-Wave 5G Radios: Baseband to Waves |
2021 |
18 |
Highly linear and sub 120 fs Ron × Coff 130 nm RF SOI technology targeting 5G carrier aggregation RF switches and FEM SOC |
2016 |
17 |
FinFET and UTB/B for RF SOI communication systems |
2016 |
17 |
BSIM-IMG: Compact model for RF-SOI MOSFETs |
2015 |
16 |
36% Frequency-tuning-range dual-core 60 GHz push-push VCO in 45 nm RF-SOI CMOS technology |
2017 |
15 |
Lateral RF SOI power MOSFETs with f/sub T/ of 6.9 GHz |
2000 |
14 |
VLSI Design – RF SOI Switch FET Design and Modeling Tradeoffs for GSM Applications |
2010 |
13 |
RF SOI CMOS technology on 1st and 2nd generation trap-rich high resistivity SOI wafers |
2017 |
13 |
SOI Technologies Overview for Low-Power Low-Voltage Radio-Frequency Applications |
2000 |
13 |
Noise figure analysis of 2.5 GHz folded cascode LNA using high-Q layout optimized inductors |
2015 |
13 |
SOI-CMOS technology with monolithically integrated active and passive RF devices on high resistivity SIMOX substrates |
1996 |
11 |
Application-oriented performance of RF CMOS technologies on flexible substrates |
2015 |
11 |
Advances in RF foundry technology for wireless and wireline communications |
2016 |
10 |
A compact transmit/receive switch for 2.4 GHz reader-less active RFID tag transceiver |
2015 |
10 |
Ultra Low-Loss Si Substrate for On-Chip UWB GHz Antennas |
2019 |
10 |
High performance RF SOI MOSFET varactor modeling and design |
2006 |
8 |
Irradiation and Temperature Effects for a 32 nm RF Silicon-on-Insulator CMOS Process |
2014 |
8 |
被引用最多次的RF-SOI研究论文介绍
1.《ISSCC – 2.1 :mm-Wave 5G Radios: Baseband to Waves》
引用次数最多的论文是《ISSCC – 2.1 :mm-Wave 5G Radios: Baseband to Waves》,该论文由Analog Devices发表在“2021 IEEE International Solid- State Circuits Conference (ISSCC),”上;
构建毫米波 (mmW) 5G 无线电面临诸多挑战 。其中一些关键挑战包括成本、散热和阵列校准。本文介绍了 ADI 目前使用的全系列 mmW 5G 无线电,重点介绍毫米波前端部分,以及它如何应对其中一些挑战。ADI展示的设计是双极化 24 至 30GHz 频段 mmW 无线电的示例。此无线电中的所有 IC 覆盖 24 至 30GHz,允许在 n257、n258 和 n261 无线电中使用相同的芯片,从而降低了开发成本。无线电由两个域组成:B/B-IF 和 mmW。B/B-IF 域包含一个利用正交基带数据转换器和混频器来生成 IF 的 IF 收发器,或数据转换器 (MxFE) 来直接合成 IF。前者最适合较窄带宽应用,而后者消耗更多功率但可以支持更高的带宽。
mmW 域由一个 mmW 上/下变频器和一个 16 通道( 2 个极化 方向,每个极化8 个通道)高性能波束形成器 (BF) 组成。mmW 芯片采用 45nm RF SOI 工艺,针对 mmW 5G 频段的 RF 性能进行了优化。SOI 工艺是一种 12 英寸工艺,因此经济地适用于大批量应用。使用 400MHz 5G NR 波形,BF 线性输出功率为 12dBm/通道 @ 3% EVM。通道 P1dB 为 20dBm。两个 mmW BF 分别覆盖 24 至 30 和 37 至 44GHz 频段。已制造出由 128 个双极化天线元件、16 个 BF、4 个上/下变频器 (UDC) 和电源管理电路组成的 mmW 前端实现。
2.《Advanced 200-mm RF SOI Technology exhibiting 78 fs RON×COFF and 3.7 V breakdown voltage targeting sub 6 GHz 5G FEM》
引用次数最多的另外一篇论文是《Advanced 200-mm RF SOI Technology exhibiting 78 fs RON×COFF and 3.7 V breakdown voltage targeting sub 6 GHz 5G FEM(先进的 200 毫米 RF SOI 技术,实现 78 fs RON×COFF 和 3.7 V 击穿电压,目标是 6 GHz 以下 5G FEM)》,该论文由STMicroelectronics发表在“2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),”上;
下面是这篇论文的引用情况:
目前,RF 前端模块 (FEM) 使用多种技术实现。然而,由于集成推动了无线业务的发展,为了实现适当的成本和尺寸,CMOS 绝缘体上硅 (SOI) 已于 10 年前被采用,现在已成为手机和 WiFi 的 RF FEM 中 RF 开关的主导技术 。虽然 RF SOI 技术目前的性能已经超过了使用 GaAs 技术所能达到的性能,但新的蜂窝系统要求对性能提出了更严格的要求,因此 RF SOI 技术必须继续改进。在本文中,我们回顾并讨论了先进的 200 毫米 RF SOI 技术的优化,该技术实现了 78 fs 的 RON×COFF 和 3.7 V 的击穿电压。
这篇论文的主要研究领域是:绝缘体上硅、CMOS、电气工程、射频、电压、物理、击穿电压、无线、光电子、硅、电子工程、计算机科学、工程、电信等技术领域;
与RF-SOI相关的关键技术研究领域
与RF-SOI相关的关键技术研究领域和相应发表的论文数量:
与RF-SOI相关的关键技术研究领域 |
论文数量 |
Silicon on insulator绝缘体上的硅 |
124 |
Materials science材料科学 |
102 |
Electrical engineering电气工程 |
97 |
Optoelectronics光电子学 |
95 |
Electronic engineering电子工程 |
65 |
Engineering工程学 |
63 |
CMOS |
60 |
Radio frequency射频 |
57 |
Computer science计算机科学 |
46 |
Transistor晶体管 |
45 |
Physics物理学 |
37 |
Silicon硅 |
35 |
MOSFET |
34 |
Power (physics)功率(物理学) |
25 |
Voltage电压 |
24 |
Amplifier放大器 |
22 |
Insertion loss插入损耗 |
19 |
Capacitance电容 |
15 |
Linearity线性度 |
14 |
RF switch射频开关 |
14 |
Telecommunications电信 |
14 |
Equivalent circuit等效电路 |
13 |
Substrate (electronics)基板(电子学) |
13 |
Quantum mechanics量子力学 |
12 |
Phase noise相位噪声 |
11 |
Breakdown voltage击穿电压 |
10 |
Electronic circuit电子电路 |
10 |
LDMOS |
10 |
Wafer晶圆 |
10 |
Integrated circuit集成电路 |
9 |
发表与RF-SOI相关的论文数量的国家/地区排名
发表与RF-SOI相关论文的国家地区 |
论文数量 |
United States美国 |
36 |
China中国 |
21 |
Belgium比利时 |
20 |
Germany德国 |
10 |
France法国 |
10 |
Switzerland瑞士 |
8 |
Korea, Republic of韩国 |
5 |
India印度 |
3 |
Taiwan台湾 |
3 |
Canada加拿大 |
2 |
Spain西班牙 |
2 |
Finland芬兰 |
2 |
United Kingdom英国 |
2 |
Iran伊朗 |
2 |
Netherlands荷兰 |
2 |
Singapore新加坡 |
2 |
Italy意大利 |
1 |
Mexico墨西哥 |
1 |
Malaysia马来西亚 |
1 |
发表与RF-SOI相关论文的顶级期刊名称
与RF-SOI相关论文的顶级期刊名称(英文) |
与RF-SOI相关论文的顶级期刊名称(中文) |
IEEE Transactions on Electron Devices |
IEEE 电子设备学报 |
Analog Integrated Circuits and Signal Processing |
模拟集成电路和信号处理 |
ECS Meeting Abstracts |
ECS 会议摘要 |
Microelectronics |
微电子学 |
Solid-State Electronics |
固态电子学 |
2015 IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems |
2015 IEEE 第 15 届射频系统中的硅单片集成电路专题会议 |
2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) |
2020 IEEE 射频集成电路研讨会 (RFIC) |
2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) |
2022 IEEE 射频集成电路研讨会 (RFIC) |
IEEE Electron Device Letters |
IEEE 电子设备快报 |
IEEE Transactions on Microwave Theory and Techniques |
IEEE 微波理论与技术学报 |
Journal of Semiconductors |
半导体杂志 |
2001 IEEE International SOI Conference. Proceedings (Cat. No.01CH37207) |
2001 IEEE 国际 SOI 会议。会议记录(目录号 01CH37207) |
2016 IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF) |
2016 IEEE 第 16 届射频系统硅单片集成电路专题会议 (SiRF) |
2017 IEEE MTT-S International Microwave Symposium (IMS) |
2017 IEEE MTT-S 国际微波研讨会 (IMS) |
2018 IEEE International Symposium on Circuits and Systems (ISCAS) |
2018 IEEE 国际电路与系统研讨会 (ISCAS) |
IEEE Journal of the Electron Devices Society |
IEEE 电子器件学会期刊 |
IEEE Transactions on Circuits and Systems I: Regular Papers |
IEEE 电路与系统学报 I:常规论文 |
Sensors (Basel, Switzerland) |
传感器(瑞士巴塞尔) |
1996 IEEE International SOI Conference Proceedings |
1996 IEEE 国际 SOI 会议论文集 |
1999 IEEE International SOI Conference. Proceedings (Cat. No.99CH36345) |
1999 IEEE 国际 SOI 会议论文集(目录号 99CH36345) |
与RF-SOI相关的参考学习书籍
1.《Semiconductor-On-Insulator Materials for Nanoelectronics Applications(用于纳米电子应用的绝缘体上半导体材料)》
《用于纳米电子应用的绝缘体上半导体材料》致力于快速发展的现代纳米电子领域,特别是基于绝缘体上半导体 (SemOI) 系统构建的纳米电子器件的物理和技术。
本书包含了欧洲、美国、巴西和俄罗斯领先公司和大学在该领域的成就。
本书围绕四个主要主题展开:1. 新型绝缘体上半导体材料;2. 现代 SemOI 器件的物理学;3. SemOI 器件的高级特性;4. SOI 上的传感器和 MEMS。
《用于纳米电子应用的绝缘体上半导体材料》不仅对纳米和微电子专家有用,而且对学生和对现代电子和光电子新方向感兴趣的广大读者也很有用。
2.《Nanoscaled Semiconductor-On-Insulator Materials, Sensors and Devices(纳米级绝缘体上半导体材料、传感器和器件)》
本专题合集的内容包括: 1. 绝缘体上半导体结构和器件技术;2. 新型 SOI 器件的物理特性;3. SOI 传感器和 MEMS;4. 纳米点、纳米线和纳米薄膜。第一部分涵盖了各种基于 SemOI 的结构,例如绝缘体上 ZnO、Si 氧化物上 a-SiC、通过离子注入制造的石墨内膜等。第二部分介绍了基于源结附近碰撞电离的新器件、纳米级 SOI MOSFET 中电荷传输的建模、具有 LaLuO3 高 k 栅极电介质的 SOI MOSFET 的电特性以及中子对纳米级 SOI 器件行为的影响的研究。第三部分考虑了各种类型的 SOI 传感器和 MEMS,以及它们的特性和应用。第四部分介绍了纳米线和纳米点等量子维结构的制造和特性。因此,本书将对广大读者有用。本书由汤森路透 CPCI-S (WoS) 编入索引。
(本公司可以为个人和企业提供专利分析服务,找研究资料和参考书籍服务,相关领域的技术发展趋势洞察服务,以及市场需求和竞争环境分析服务,有需求者可以私信我们)
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/77779.html