「图解AI」什么是语义分割、实例分割、全景分割

图像分割(image segmentation)是计算机视觉中非常重要的研究和应用方向,是根据某些规则将图片中的像素分成不同的部分、打上不同标签

「图解AI」什么是语义分割、实例分割、全景分割

图像分割(image segmentation)是计算机视觉中非常重要的研究和应用方向,是根据某些规则将图片中的像素分成不同的部分、打上不同标签。图解如下:

1、图像分类(image classification)

识别图像中存在的内容,如下图,有人(person)、树(tree)、草地(grass)、天空(sky)

「图解AI」什么是语义分割、实例分割、全景分割

2、目标检测(object detection)

识别图像中存在的内容和检测其位置,如下图,以识别和检测人(person)为例

「图解AI」什么是语义分割、实例分割、全景分割

3、语义分割(semantic segmentation)

对图像中的每个像素打上类别标签,如下图,把图像分为人(红色)、树木(深绿)、草地(浅绿)、天空(蓝色)标签

「图解AI」什么是语义分割、实例分割、全景分割

4、实例分割(instance segmentation)

目标检测和语义分割的结合,在图像中将目标检测出来(目标检测),然后对每个像素打上标签(语义分割)。对比上图、下图,如以人(person)为目标,语义分割不区分属于相同类别的不同实例(所有人都标为红色),实例分割区分同类的不同实例(使用不同颜色区分不同的人)

「图解AI」什么是语义分割、实例分割、全景分割

5、全景分割(panoptic segmentation)

语义分割和实例分割的结合,即要对所有目标都检测出来,又要区分出同个类别中的不同实例。对比上图、下图,实例分割只对图像中的目标(如上图中的人)进行检测和按像素分割,区分不同实例(使用不同颜色),而全景分割是对图中的所有物体包括背景都要进行检测和分割,区分不同实例(使用不同颜色)

「图解AI」什么是语义分割、实例分割、全景分割

欢迎关注本人的微信公众号“大数据与人工智能Lab”(BigdataAILab),获取更多信息

「图解AI」什么是语义分割、实例分割、全景分割

推荐相关阅读

1、AI 实战系列

  • 【AI实战】手把手教你文字识别(文字检测篇:MSER、CTPN、SegLink、EAST 等)
  • 【AI实战】手把手教你文字识别(入门篇:验证码识别)
  • 【AI实战】快速掌握TensorFlow(一):基本操作
  • 【AI实战】快速掌握TensorFlow(二):计算图、会话
  • 【AI实战】快速掌握TensorFlow(三):激励函数
  • 【AI实战】快速掌握TensorFlow(四):损失函数
  • 【AI实战】搭建基础环境
  • 【AI实战】训练第一个模型
  • 【AI实战】编写人脸识别程序
  • 【AI实战】动手训练目标检测模型(SSD篇)
  • 【AI实战】动手训练目标检测模型(YOLO篇)

2、大话深度学习系列

  • 【精华整理】CNN进化史
  • 大话文本识别经典模型(CRNN)
  • 大话文本检测经典模型(CTPN)
  • 大话文本检测经典模型(SegLink)
  • 大话文本检测经典模型(EAST)
  • 大话卷积神经网络(CNN)
  • 大话循环神经网络(RNN)
  • 大话深度残差网络(DRN)
  • 大话深度信念网络(DBN)
  • 大话CNN经典模型:LeNet
  • 大话CNN经典模型:AlexNet
  • 大话CNN经典模型:VGGNet
  • 大话CNN经典模型:GoogLeNet
  • 大话目标检测经典模型:RCNN、Fast RCNN、Faster RCNN
  • 大话目标检测经典模型:Mask R-CNN

3、图解 AI 系列

  • 什么是语义分割、实例分割、全景分割

4、AI 杂谈

  • 27种深度学习经典模型
  • 浅说“迁移学习”
  • 什么是“强化学习”
  • AlphaGo算法原理浅析
  • 大数据究竟有多少个V

5、大数据超详细系列

  • Apache Hadoop 2.8 完全分布式集群搭建超详细教程
  • Apache Hive 2.1.1 安装配置超详细教程
  • Apache HBase 1.2.6 完全分布式集群搭建超详细教程
  • 离线安装Cloudera Manager 5和CDH5(最新版5.13.0)超详细教程

参考文献:K码农-http://kmanong.top/kmn/qxw/form/home?top_cate=28

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/83447.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信