小型爬虫需求,requests库+bs4库就能解决;大型爬虫数据,尤其涉及异步抓取、内容管理及后续扩展等功能时,就需要用到爬虫框架了。
下面介绍了10个爬虫框架,大家可以学习使用!
1. Scrapy
- scrapy官网:https://scrapy.org/
- scrapy中文文档:https://www.osgeo.cn/scrapy/intro/o
Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。
其最初是为了 页面抓取 (更确切来说, 网络抓取 )所设计的, 也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。
2. PySpider
- PySpider 中文网:http://www.pyspider.cn
- PySpider 官网:http://docs.pyspider.org
- PySpider 演示:http://demo.pyspider.org
- PySpider 源码:https://github.com/binux/pyspider
PySpider是一个国人编写的强大的网络爬虫系统并带有强大的WebUI,其用python实现的功能强大的网络爬虫系统,能在浏览器界面上进行脚本的编写,功能的调度和爬取结果的实时查看,后端使用常用的数据库进行爬取结果的存储,还能定时设置任务与任务优先级等。
3. Crawley
Crawley可以高速爬取对应网站的内容,支持关系和非关系数据库,数据可以导出为JSON、XML等。
4. Portia
- 官网:https://portia.scrapinghub.com/
Portia是一个开源可视化爬虫工具,可让您在不需要任何编程知识的情况下爬取网站!简单地注释您感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。其主要特征是:
- 基于 scrapy 内核
- 可视化爬取内容,不需要任何开发专业知识
- 动态匹配相同模板的内容
5. Newspaper
- 官方文档:Quickstart – newspaper 0.0.2 documentation
- github地址:https://github.com/codelucas/newspaper
Newspaper可以用来提取新闻、文章和内容分析。使用多线程,支持10多种语言等。作者从requests库的简洁与强大得到灵感,使用python开发的可用于提取文章内容的程序。支持10多种语言并且所有的都是unicode编码。
6. Beautiful Soup
- 官方文档:Beautiful Soup 4.4.0 文档
Beautiful Soup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。这个我是使用的特别频繁的。在获取html元素,都是bs4完成的。
7. Grab
- 官网:https://grablib.org/en/latest/
Grab是一个用于构建Web刮板的Python框架。借助Grab,您可以构建各种复杂的网页抓取工具,从简单的5行脚本到处理数百万个网页的复杂异步网站抓取工具。Grab提供一个API用于执行网络请求和处理接收到的内容,例如与HTML文档的DOM树进行交互。
8. Cola
- github地址:https://github.com/qinxuye/cola
Cola是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。
9. Selenium
- 官网:https://www.selenium.dev/
Selenium 是自动化测试工具。它支持各种浏览器,包括 Chrome,Safari,Firefox 等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium 支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与 Python 的对接,Python 进行后期的处理。
10. Python-goose
- github地址:https://github.com/goose3/goose
Python-goose框架可提取的信息包括:
- 文章主体内容
- 文章主要图片
- 文章中嵌入的任何Youtube/Vimeo视频
- 元描述
- 元标签
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/91795.html