面试官:要保证消息不丢失,又不重复,消息队列怎么选型?

面试官:要保证消息不丢失,又不重复,消息队列怎么选型?在使用消息队列时 有两个经常让我们烦恼的问题 消息丢失和消息重复 那我们在做技术选型时 有没有一个消息队列能解决消息丢失和消息重复这两个问题呢 消息丢失如上图 从生产者发送消息 Broker 保存消息 消费者消费消息 每一个环节都有可能丢失

大家好,欢迎来到IT知识分享网。

面试官:要保证消息不丢失,又不重复,消息队列怎么选型?

在使用消息队列时,有两个经常让我们烦恼的问题,消息丢失和消息重复。那我们在做技术选型时,有没有一个消息队列能解决消息丢失和消息重复这两个问题呢?

消息丢失

面试官:要保证消息不丢失,又不重复,消息队列怎么选型?

如上图,从生产者发送消息,Broker 保存消息,消费者消费消息,每一个环节都有可能丢失消息。

发送丢失

生产者发送消息时,如果处理不当,很可能会造成消息丢失。

生产者发送消息,主流消息队列都支持同步发送和异步发送。如果使用同步发送,生产者发送消息后,会同步等待 Broker 返回的 ACK,收到 ACK 消息,就认为消息发送成功。如果长时间没有收到,则会认为消息发送失败,需要进行重试。

同步发送可以保证消息不丢失,但是会有性能问题,所以多数情况会选择异步发送。异步发送如何保证消息不丢失呢?主流消息队列(比如 Kafka 和 RocketMQ)实现方法基本类似,使用回调函数来实现。下面看一下 Kafka 的异步发送代码:

producer.send(record, new Callback() { public void onCompletion(RecordMetadata metadata, Exception exception) { if (exception != null) { logger.error("发送消息失败:", exception); } if (metadata != null) { logger.info("消息发送成功"); } } });

消息存储

生产者发送消息成功,也不能保证消息绝对不丢失。因为即使消息发送到 Broker,如果在消费者拉取到消息之前,Broker 宕机了,消息还没有落盘,也会导致消息丢失。

在存储阶段要保证消息不丢失,可以考虑几个方面:

同步刷盘

采用异步刷盘,如果在消息落盘之前 Broker 宕机了,就会造成消息丢失。而采用同步刷盘,等待消息落盘之后,再给 Sender 返回发送成功,可以从消息发送环节保证消息不丢失。

面试官:要保证消息不丢失,又不重复,消息队列怎么选型?

在 RocketMQ 中,把 flushDiskType 参数配置为 SYNC_FLUSH 就可以开启同步刷盘。

Broker 集群

如果 Broker 集群中只有一个节点,即使消息落盘成功了,Broker 发送故障,在 Broker 恢复以前消费者也会拉取不到消息。而且如果 Broker 磁盘故障不可恢复,消息也会丢失。

采用 Broker 集群可以很好地解决这个问题。见下图:

面试官:要保证消息不丢失,又不重复,消息队列怎么选型?

在 Broker 集群时,可以等待 2 个以上的节点同步消息完成后再给 Producer 返回成功。这样即使一个 Broker 挂了,也可以很容易找到替代的 Broker。

消息消费

消费者保证不丢失消息,需要消费完成后再给 Broker 返回 ACK。在主流的消息队列中,如果 Broker 收不到 ACK,都会给消费者再次发送这条消息。

有时候为了解决消息积压的问题,消费者拉取到消息后会直接返回 ACK,然后再异步执行消息处理逻辑。这样要保证消息不丢失,需要在返回 ACK 之前把消息保存到本地,比如持久化到数据库,后面可以取数据库保存的消息进行处理。

消息重复

消息重复一般有两个原因,一个是生产者发送消息后没有收到 ACK,然后进行重复发送,另一个原因是消费者消费完成后 Broker 没有收到 ACK,导致消息重复推送给消费者。

重复消息会对业务造成影响,比如电商场景中的重复支付、账务场景中的重复记账,对业务造成的影响都比较严重。

从目前主流的消息队列来看,并没有一个消息队列能解决消息重复消费的问题,只能在消费端做幂等处理。下面提供几个思路作为参考。

数据库唯一键约束

如果消息会落本地数据库,可以采用消息 ID 作为唯一键。如果消息不落数据库,可以将消息 ID 或者消息中其他唯一能标识消息的属性作为唯一键落业务数据表。

保存消费记录

我们也可以将消息 ID 保存 Redis,消费消息前判断消息 ID 是否已存在。

ValueOperations<String, String> valueOperations = redisTemplate.opsForValue(); Boolean result = valueOperations.setIfAbsent(messageId, messageId); if (result) { //消费逻辑; } else { logger.error("这条消息已经消费,跳过,消息ID:{}", messageId); }

这里有一个注意点,如果消费失败了,需要删除 Redis 中保存的消息 ID。

总结

消息不丢失、不重复是消息队列的基本要求,但这个基本要求还是很难满足的。

消息丢失这个要求,主流消息队列通过消息重试和消息持久化的方式可以满足。

但消息重试也同时带来了消息重复的可能性,主流消息队列在解决重复消息的问题上并没有现成的方案,对不允许重复消费的场景,需要开发人员在消费端做幂等处理。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/97768.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信