C++中,float double区别

C++中,float double区别类型       比特数   有效数字             数值范围     float         32         6-7         -3.4*10(-38)~3.4*10(38)    double       64     

大家好,欢迎来到IT知识分享网。

类型               比特数      有效数字                          数值范围 
       float                  32                  6-7                  -3.4*10(-38)~3.4*10(38) 
      double               64               15-16              -1.7*10(-308)~1.7*10(308) 
     long double      128              18-19             -1.2*10(-4932)~1.2*10(4932) 
简单来说,Float为单精度,内存中占4个字节,有效数位是7位(因为有正负,所以不是8位),在我的电脑且VC++6.0平台中默认显示是6位有效数字;double为双精度,占8个字节,有效数位是16位,但在我的电脑且VC++6.0平台中默认显示同样是6位有效数字(见我的double_float文件) 
还有,有个例子:在C和C++中,如下赋值语句 
float a=0.1; 
编译器报错:warning C4305: ‘initializing’ : truncation from ‘const double ‘ to ‘float ‘ 
原因: 
在C/C++中(也不知道是不是就在VC++中这样),上述语句等号右边0.1,我们以为它是个float,但是编译器却把它认为是个double(因为小数默认是double),所以要报这个warning,一般改成0.1f就没事了。 
本人通常的做法,经常使用double,而不喜欢使用float。

  C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit, double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE的规范 的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。

    无论是单精度还是双精度在存储中都分为三个部分:

  1. 符号位(Sign) : 0代表正,1代表为负
  2. 指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
  3. 尾数部分(Mantissa):尾数部分

 其中float的存储方式如下图所示:

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

而双精度的存储方式为:

 

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

    R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.25*,而120.5可以表示为:1.205*, 这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数 法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用 二进制的科学计数法表示1000.01可以表示为1.0001*,1110110.1可以表示为1.1101101*,任何一个数都的科学计数法表示都为1.xxx*, 尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点, 24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以 指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25和120.5在内存中真正的存储方式。

     首先看下8.25,用二进制的科学计数法表示为:1.0001*

按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.25的存储方式如下图所示:

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

而单精度浮点数120.5的存储方式如下图所示:

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

那么如果给出内存中一段数据,并且告诉你是单精度存储的话,你如何知道该数据的十进制数值呢?其实就是对上面的反推过程,比如给出如下内存 数据:0100001011101101000000000000,首先我们现将该数据分段,0 10000 0101 110 1101 0000 0000 0000 0000,在内存中的存储就为下图所示:

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

根据我们的计算方式,可以计算出,这样一组数据表示为:1.1101101*=120.5

而双精度浮点数的存储和单精度的存储大同小异,不同的是指数部分和尾数部分的位数。所以这里不再详细的介绍双精度的存储方式了,只将120.5的最后存储方式图给出,大家可以仔细想想为何是这样子的

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

下面我就这个基础知识点来解决一个我们的一个疑惑,请看下面一段程序,注意观察输出结果

            float f = 2.2f;

            double d = (double)f;

            Console.WriteLine(d.ToString(“0.0000000000000”));

            f = 2.25f;

            d = (double)f;

            Console.WriteLine(d.ToString(“0.0000000000000”));

可能输出的结果让大家疑惑不解,单精度的2.2转换为双精度后,精确到小数点后13位后变为了2.2000000476837,而单精度的 2.25转换为双精度后,变为了2.2500000000000,为何2.2在转换后的数值更改了而2.25却没有更改呢?很奇怪吧?其实通过上面关于两 种存储结果的介绍,我们已经大概能找到答案。首先我们看看2.25的单精度存储方式,很简单 0 1000 0001 001 0000 0000 0000 0000 0000,而2.25的双精度表示为:0 100 0000 0001 0010 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000,这样2.25在进行强制转换的时候,数值是不会变的,而我们再看看2.2呢,2.2用科学计数法表示应该为:将十进制的小数转换为二进制的小数 的方法为将小数*2,取整数部分,所以0.282=0.4,所以二进制小数第一位为0.4的整数部分0,0.4×2=0.8,第二位为0,0.8*2= 1.6,第三位为1,0.6×2 = 1.2,第四位为1,0.2*2=0.4,第五位为0,这样永远也不可能乘到=1.0,得到的二进制是一个无限循环的排列 00110011001100110011… ,对于单精度数据来说,尾数只能表示24bit的精度,所以2.2的float存储为:

C++中,float double区别 - sunwenhua168 - sunwenhua168的博客

但是这样存储方式,换算成十进制的值,却不会是2.2的,应为十进制在转换为二进制的时候可能会不准确,如2.2,而double类型的数 据也存在同样的问题,所以在浮点数表示中会产生些许的误差,在单精度转换为双精度的时候,也会存在误差的问题,对于能够用二进制表示的十进制数据,如 2.25,这个误差就会不存在,所以会出现上面比较奇怪的输出结果。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/14388.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信