大家好,欢迎来到IT知识分享网。
从Nesterov的工作开始,最近关于随机坐标下降算法的理论和应用已经进行了大量工作,表明随机坐标选择准则能达到与高斯-索思韦尔选择准则相同的收敛速度。
There has been significant recent work on the theory and application ofrandomized coordinate descent algorithms, beginning with the work of Nesterov,who showed that a random-coordinate selection rule achieves the sameconvergence rate as the Gauss-Southwell selection rule.
研究结果表明,我们永远不应该使用高斯-索思韦尔准则,因为它通常比随机选择复杂得多。
This result suggests that we should never use the Gauss-Southwell rule,because it is typically much more expensive than random selection.
然而,这些算法的经验行为与此理论结果相抵触:在选择准则的计算成本可比拟的应用中,高斯-索思韦尔选择准则倾向于具有比随机坐标选择更好的性能。
However, the empirical behaviours of these algorithms contradict thistheoretical result: in applications where the computational costs of theselection rules are comparable, the Gauss-Southwell selection rule tends toperform substantially better than random coordinate selection.
我们对高斯-索思韦尔准则进行了简单的分析,结果表明,除了极端情况,它的收敛速度比随机坐标选择要更快一些。
We give a simple analysis of the Gauss-Southwell rule showingthat—except in extreme cases—its convergence rate is faster than choosingrandom coordinates.
原文及完整源码下载地址:
http://page2.dfpan.com/fs/elfcfj62f21112b9160/
更多精彩文章请关注微信号:
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/16149.html