pytorch中优化器optimizer.param_groups

pytorch中优化器optimizer.param_groupsoptimizer.param_groups:是长度为2的list,其中的元素是2个字典;optimizer.param_groups[0]:长度为6的字典,包括[‘amsgrad’,‘params’,‘lr’,‘betas’,‘weight_decay’,‘eps’]这6个参数;optimizer.param_groups[1]:好像是表示优化器的状态的一个字典;参考:https://blog.csdn.net/AWhiteDongDong/article/details/1061

大家好,欢迎来到IT知识分享网。pytorch中优化器optimizer.param_groups"

optimizer.param_groups: 是长度为2的list,其中的元素是2个字典;

optimizer.param_groups[0]: 长度为6的字典,包括[‘amsgrad’, ‘params’, ‘lr’, ‘betas’, ‘weight_decay’, ‘eps’]这6个参数;

optimizer.param_groups[1]: 好像是表示优化器的状态的一个字典;

import torch
import torch.optim as optim


w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)
[{ 
   'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]
Per the docs, the add_param_group method accepts a param_group parameter that is a dict. Example of use:

import torch
import torch.optim as optim


w1 = torch.randn(3, 3)
w1.requires_grad = True
w2 = torch.randn(3, 3)
w2.requires_grad = True
o = optim.Adam([w1])
print(o.param_groups)
gives

[{ 
   'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0}]
now

o.add_param_group({ 
   'params': w2})
print(o.param_groups)
[{ 
   'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[ 2.9064, -0.2141, -0.4037],
           [-0.5718,  1.0375, -0.6862],
           [-0.8372,  0.4380, -0.1572]])],
  'weight_decay': 0},
 { 
   'amsgrad': False,
  'betas': (0.9, 0.999),
  'eps': 1e-08,
  'lr': 0.001,
  'params': [tensor([[-0.0560,  0.4585, -0.7589],
           [-0.1994,  0.4557,  0.5648],
           [-0.1280, -0.0333, -1.1886]])],
  'weight_decay': 0}]
# 动态修改学习率
for param_group in optimizer.param_groups:
    param_group["lr"] = lr 
# 得到学习率optimizer.param_groups[0]["lr"] 

# print('查看optimizer.param_groups结构:')
# i_list=[i for i in optimizer.param_groups[0].keys()]
# print(i_list) 
['amsgrad', 'params', 'lr', 'betas', 'weight_decay', 'eps']

参考:
https://blog.csdn.net/bc521bc/article/details/85864555
https://blog.csdn.net/AWhiteDongDong/article/details/106143413

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/21593.html

(0)

相关推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

关注微信