python numba安装失败,尝试numba的巨大错误

python numba安装失败,尝试numba的巨大错误I’mrunningintoabigloadoferrorsusingnumba.Ironically,thecorrectresultisprintedaftertheerrors.I’musingthenewestAnacondapythonandinstallednumbawithcondainstallnumbaonceonU…

大家好,欢迎来到IT知识分享网。

python numba安装失败,尝试numba的巨大错误

I’m running into a big load of errors using numba. Ironically, the correct result is printed after the errors. I’m using the newest Anaconda python and installed numba with

conda install numba

once on Ubuntu 13, 64 bit and also anaconda 64 bit and on windows 64 bit with a 32 bit version of anaconda.

The script I’m trying to execute is:

# -*- coding: utf-8 -*-

import math

from numba import autojit

pi = math.pi

@autojit

def sinc(x):

if x == 0.0:

return 1.0

else:

return math.sin(x*pi)/(pi*x)

if __name__ == ‘__main__’:

a = 4.5

print sinc(a)

and the errors I get are:

DEBUG — translate:361:translate

; ModuleID = ‘tmp.module.__main__.sinc.45bce60’

@PyArray_API = linkonce_odr global i8** inttoptr (i64 140030693224864 to i8**)

define double @__numba_specialized_0___main___2E_sinc(double %x) {

entry:

%return_value = alloca double

br label %”if_cond_13:7″

cleanup_label: ; preds = %”else_body_16:8″, %”if_body_14:8″, %error_label

%0 = load double* %return_value

ret double %0

error_label: ; No predecessors!

store double 0x7FF8000000000000, double* %return_value

br label %cleanup_label

“if_cond_13:7”: ; preds = %entry

%1 = fcmp oeq double %x, 0.000000e+00

%2 = icmp ne i1 %1, false

br i1 %2, label %”if_body_14:8″, label %”else_body_16:8″

“if_body_14:8″: ; preds = %”if_cond_13:7”

store double 1.000000e+00, double* %return_value

br label %cleanup_label

“else_body_16:8″: ; preds = %”if_cond_13:7”

%3 = fmul double %x, 0x400921FB54442D18

%4 = call double @”numba.math.[‘double’].sin”(double %3)

%5 = fmul double 0x400921FB54442D18, %x

%6 = fdiv double %4, %5

store double %6, double* %return_value

br label %cleanup_label

}

declare { i64, i8* }* @Py_BuildValue(i8*, …)

declare i32 @PyArg_ParseTuple({ i64, i8* }*, i8*, …)

declare void @PyErr_Clear()

declare double @”numba.math.[‘double’].sin”(double)

!tbaa = !{!0, !1}

!0 = metadata !{metadata !”root”}

!1 = metadata !{metadata !”char *”, metadata !0}

DEBUG — translate:361:translate

; ModuleID = ‘numba_executable_module’

@PyArray_API = linkonce_odr global i8** inttoptr (i64 140030693224864 to i8**)

define void @Py_INCREF({ i64, i8* }* %obj) {

decl:

%obj1 = alloca { i64, i8* }*

store { i64, i8* }* %obj, { i64, i8* }** %obj1

%0 = bitcast { i64, i8* }* %obj to i64*

%1 = load i64* %0

%2 = add i64 %1, 1

store i64 %2, i64* %0

ret void

}

define void @Py_DECREF({ i64, i8* }* %obj) {

decl:

%obj1 = alloca { i64, i8* }*

store { i64, i8* }* %obj, { i64, i8* }** %obj1

%0 = bitcast { i64, i8* }* %obj to i64*

%1 = load i64* %0

%2 = icmp sgt i64 %1, 1

br i1 %2, label %if.then, label %if.else

if.then: ; preds = %decl

%3 = add i64 %1, -1

store i64 %3, i64* %0

br label %if.end

if.else: ; preds = %decl

call void @Py_DecRef({ i64, i8* }* %obj)

br label %if.end

if.end: ; preds = %if.else, %if.then

ret void

}

declare void @Py_DecRef({ i64, i8* }*)

define void @Py_XINCREF({ i64, i8* }* %obj) {

decl:

%obj1 = alloca { i64, i8* }*

store { i64, i8* }* %obj, { i64, i8* }** %obj1

%0 = ptrtoint { i64, i8* }* %obj to i64

%1 = icmp ne i64 %0, 0

br i1 %1, label %if.then, label %if.end

if.then: ; preds = %decl

%2 = bitcast { i64, i8* }* %obj to i64*

%3 = load i64* %2

%4 = add i64 %3, 1

store i64 %4, i64* %2

br label %if.end

if.end: ; preds = %if.then, %decl

ret void

}

define void @Py_XDECREF({ i64, i8* }* %obj) {

decl:

%obj1 = alloca { i64, i8* }*

store { i64, i8* }* %obj, { i64, i8* }** %obj1

%0 = ptrtoint { i64, i8* }* %obj to i64

%1 = icmp ne i64 %0, 0

br i1 %1, label %if.then, label %if.end

if.then: ; preds = %decl

call void @Py_DECREF({ i64, i8* }* %obj)

br label %if.end

if.end: ; preds = %if.then, %decl

ret void

}

define i8* @IndexAxis(i8* %data, i64* %in_shape, i64* %in_strides, i64 %src_dim, i64 %index) {

decl:

%data1 = alloca i8*

%in_shape2 = alloca i64*

%in_strides3 = alloca i64*

%src_dim4 = alloca i64

%index5 = alloca i64

%result = alloca i8*

store i8* %data, i8** %data1

store i64* %in_shape, i64** %in_shape2

store i64* %in_strides, i64** %in_strides3

store i64 %src_dim, i64* %src_dim4

store i64 %index, i64* %index5

%0 = load i64** %in_strides3

%1 = load i64* %src_dim4

%2 = getelementptr inbounds i64* %0, i64 %1

%3 = load i64* %2

%4 = mul i64 %3, %index

%5 = load i8** %data1

%6 = getelementptr inbounds i8* %5, i64 %4

store i8* %6, i8** %result

ret i8* %6

}

define void @NewAxis(i64* %out_shape, i64* %out_strides, i32 %dst_dim) {

decl:

%out_shape1 = alloca i64*

%out_strides2 = alloca i64*

%dst_dim3 = alloca i32

store i64* %out_shape, i64** %out_shape1

store i64* %out_strides, i64** %out_strides2

store i32 %dst_dim, i32* %dst_dim3

%0 = load i64** %out_shape1

%1 = getelementptr inbounds i64* %0, i32 %dst_dim

store i64 1, i64* %1

%2 = load i64** %out_strides2

%3 = load i32* %dst_dim3

%4 = getelementptr inbounds i64* %2, i32 %3

store i64 0, i64* %4

ret void

}

define i32 @Broadcast(i64* %dst_shape, i64* %src_shape, i64* %src_strides, i32 %max_ndim, i32 %ndim) {

decl:

%dst_shape1 = alloca i64*

%src_shape2 = alloca i64*

%src_strides3 = alloca i64*

%max_ndim4 = alloca i32

%ndim5 = alloca i32

%0 = alloca i32

store i64* %dst_shape, i64** %dst_shape1

store i64* %src_shape, i64** %src_shape2

store i64* %src_strides, i64** %src_strides3

store i32 %max_ndim, i32* %max_ndim4

store i32 %ndim, i32* %ndim5

%1 = load i32* %max_ndim4

%2 = sub i32 %1, %ndim

store i32 0, i32* %0

br label %loop.cond

loop.cond: ; preds = %if.end11, %decl

%3 = load i32* %0

%4 = load i32* %ndim5

%5 = icmp slt i32 %3, %4

br i1 %5, label %loop.body, label %loop.end

loop.body: ; preds = %loop.cond

%6 = load i64** %src_shape2

%7 = getelementptr inbounds i64* %6, i32 %3

%8 = add i32 %3, %2

%9 = load i64** %dst_shape1

%10 = getelementptr inbounds i64* %9, i32 %8

%11 = load i64* %7

%12 = icmp eq i64 %11, 1

br i1 %12, label %if.then, label %if.else

loop.end: ; preds = %if.else7, %loop.cond

%merge = phi i32 [ 1, %loop.cond ], [ 0, %if.else7 ]

ret i32 %merge

if.then: ; preds = %loop.body

%13 = load i64** %src_strides3

%14 = getelementptr inbounds i64* %13, i32 %3

store i64 0, i64* %14

br label %if.end11

if.else: ; preds = %loop.body

%15 = load i64* %10

%16 = icmp eq i64 %15, 1

br i1 %16, label %if.then6, label %if.else7

if.then6: ; preds = %if.else

store i64 %11, i64* %10

br label %if.end11

if.else7: ; preds = %if.else

%17 = icmp ne i64 %11, %15

br i1 %17, label %loop.end, label %if.end11

if.end11: ; preds = %if.else7, %if.then6, %if.then

%18 = load i32* %0

%19 = add i32 %18, 1

store i32 %19, i32* %0

br label %loop.cond

}

define double @__numba_specialized_0___main___2E_sinc(double %x) {

entry:

%0 = fcmp oeq double %x, 0.000000e+00

br i1 %0, label %cleanup_label, label %”else_body_16:8″

cleanup_label: ; preds = %entry, %”else_body_16:8″

%storemerge = phi double [ %3, %”else_body_16:8″ ], [ 1.000000e+00, %entry ]

ret double %storemerge

“else_body_16:8”: ; preds = %entry

%1 = fmul double %x, 0x400921FB54442D18

%2 = tail call double @”numba.math.[‘double’].sin”(double %1)

%3 = fdiv double %2, %1

br label %cleanup_label

}

declare double @”numba.math.[‘double’].sin”(double)

define { i64, i8* }* @__numba_specialized_1_numba_2E_codegen_2E_llvmwrapper_2E___numba_wrapper_sinc(i8* %self, { i64, i8* }* %args) {

entry:

%objtemp = alloca { i64, i8* }*

store { i64, i8* }* null, { i64, i8* }** %objtemp, !tbaa !2

%0 = alloca { i64, i8* }*

%return_value = alloca { i64, i8* }*

%1 = call i32 ({ i64, i8* }*, i8*, …)* @PyArg_ParseTuple({ i64, i8* }* %args, i8* getelementptr inbounds ([2 x i8]* @__STR_0, i32 0, i32 0), { i64, i8* }** %0)

%2 = icmp eq i32 %1, 0

br i1 %2, label %cleanup.if.true, label %cleanup.if.end

cleanup_label: ; preds = %no_error, %error_label

%3 = load { i64, i8* }** %objtemp, !tbaa !2

call void @Py_XDECREF({ i64, i8* }* %3)

%4 = load { i64, i8* }** %return_value

ret { i64, i8* }* %4

error_label: ; preds = %empty1, %empty2, %cleanup.if.true

store { i64, i8* }* null, { i64, i8* }** %return_value

%5 = load { i64, i8* }** %return_value, !tbaa !2

call void @Py_XINCREF({ i64, i8* }* %5)

br label %cleanup_label

cleanup.if.true: ; preds = %entry

br label %error_label

cleanup.if.end: ; preds = %entry

%6 = load { i64, i8* }** %0

%7 = call double @PyFloat_AsDouble({ i64, i8* }* %6)

%8 = call double @__numba_specialized_0___main___2E_sinc(double %7)

br label %empty

empty: ; preds = %cleanup.if.end

%9 = call i8* @PyErr_Occurred()

%10 = ptrtoint i8* %9 to i64

%11 = icmp ne i64 %10, 0

br i1 %11, label %empty2, label %empty1

empty1: ; preds = %empty

%12 = call { i64, i8* }* @PyFloat_FromDouble(double %8)

store { i64, i8* }* %12, { i64, i8* }** %objtemp, !tbaa !2

%13 = ptrtoint { i64, i8* }* %12 to i64

%14 = icmp eq i64 %13, 0

br i1 %14, label %error_label, label %no_error

empty2: ; preds = %empty

br label %error_label

no_error: ; preds = %empty1

%15 = load { i64, i8* }** %objtemp, !tbaa !2

store { i64, i8* }* %15, { i64, i8* }** %return_value

%16 = load { i64, i8* }** %return_value, !tbaa !2

call void @Py_XINCREF({ i64, i8* }* %16)

br label %cleanup_label

}

declare { i64, i8* }* @PyFloat_FromDouble(double)

declare double @PyFloat_AsDouble({ i64, i8* }*)

declare i8* @PyErr_Occurred()

declare { i64, i8* }* @Py_BuildValue(i8*, …)

declare i32 @PyArg_ParseTuple({ i64, i8* }*, i8*, …)

declare void @PyErr_Clear()

!tbaa = !{!0, !1, !0, !1, !2}

!0 = metadata !{metadata !”root”}

!1 = metadata !{metadata !”char *”, metadata !0}

!2 = metadata !{metadata !”object”, metadata !1}

——————— Numba Encountered Errors or Warnings ———————

^

Warning 0:0: Unreachable code

——————————————————————————–

0.0707355302631

and as you can see, at the end the correct result is presented.

Does anybody knows the reason for this?

Thank you!

SirJohnFranklin

解决方案

That looks like the LLVM intermediate code. I can’t explain the warning at the end, but otherwise, it doesn’t look like you should worry about it.

I’m not sure what version of numba you’re using, but perhaps this old (and now closed) numba issue can help you: apparently running with python -O can suppress that output.

If not, you should try and find a way to set the debug level (perhaps this is set somewhere else; how do you run the code?), so that you’re not running/compiling the code at the DEBUG level.

Update

After some searching, it would appear that some debug levels were left at logging.DEBUG. You can work around this in your script by doing the following, at the end of your imports:

import logging

import numba

numba.codegen.debug.logger.setLevel(logging.INFO)

Not pretty, and perhaps there are better ways, but as a workaround this could work.

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/22240.html

(0)
上一篇 2024-01-08 14:00
下一篇 2024-01-09 16:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信