生成对抗式网络 GAN的理解

生成对抗式网络 GAN的理解转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。本文主要分为三个部分:介绍原始的GAN的原理同样非常重要的DCGAN的原理如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像…

大家好,欢迎来到IT知识分享网。

转自:https://zhuanlan.zhihu.com/p/24767059,感谢分享

生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。

本文主要分为三个部分:

  1. 介绍原始的GAN的原理 
  2. 同样非常重要的DCGAN的原理 
  3. 如何在Tensorflow跑DCGAN的代码,生成如题图所示的动漫头像,附送数据集哦 :-)

一、GAN原理介绍

说到GAN第一篇要看的paper当然是Ian Goodfellow大牛的Generative Adversarial Networks(arxiv:),这篇paper算是这个领域的开山之作。

GAN的基本原理其实非常简单,这里以生成图片为例进行说明。假设我们有两个网络,G(Generator)和D(Discriminator)。正如它的名字所暗示的那样,它们的功能分别是:

  • G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
  • D是一个判别网络,判别一张图片是不是“真实的”。它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片。

在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。

最后博弈的结果是什么?在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。

这样我们的目的就达成了:我们得到了一个生成式的模型G,它可以用来生成图片。

以上只是大致说了一下GAN的核心原理,如何用数学语言描述呢?这里直接摘录论文里的公式:

 

生成对抗式网络 GAN的理解简单分析一下这个公式:

 

  • 整个式子由两项构成。x表示真实图片,z表示输入G网络的噪声,而G(z)表示G网络生成的图片。
  • D(x)表示D网络判断真实图片是否真实的概率(因为x就是真实的,所以对于D来说,这个值越接近1越好)。而D(G(z))是D网络判断G生成的图片的是否真实的概率。
  • G的目的:上面提到过,D(G(z))是D网络判断G生成的图片是否真实的概率,G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此我们看到式子的最前面的记号是min_G。
  • D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大(max_D)

下面这幅图片很好地描述了这个过程:

生成对抗式网络 GAN的理解

那么如何用随机梯度下降法训练D和G?论文中也给出了算法:

 

生成对抗式网络 GAN的理解这里红框圈出的部分是我们要额外注意的。第一步我们训练D,D是希望V(G, D)越大越好,所以是加上梯度(ascending)。第二步训练G时,V(G, D)越小越好,所以是减去梯度(descending)。整个训练过程交替进行。

 

二、DCGAN原理介绍

我们知道深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一(论文地址:[1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

DCGAN的原理和GAN是一样的,这里就不在赘述。它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变有:

  • 取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。
  • 在D和G中均使用batch normalization
  • 去掉FC层,使网络变为全卷积网络
  • G网络中使用ReLU作为激活函数,最后一层使用tanh
  • D网络中使用LeakyReLU作为激活函数

DCGAN中的G网络示意:

生成对抗式网络 GAN的理解

三、DCGAN in Tensorflow

好了,上面说了一通原理,下面说点有意思的实践部分的内容。

DCGAN的原作者用DCGAN生成LSUN的卧室图片,这并不是特别有意思。之前在网上看到一篇文章 Chainerで顔イラストの自動生成 – Qiita ,是用DCGAN生成动漫人物头像的,效果如下:

生成对抗式网络 GAN的理解

这是个很有趣的实践内容。可惜原文是用Chainer做的,这个框架使用的人不多。下面我们就在Tensorflow中复现这个结果。

1. 原始数据集的搜集

首先我们需要用爬虫爬取大量的动漫图片,原文是在这个网站:中爬取的。我尝试的时候,发现在我的网络环境下无法访问这个网站,于是我就写了一个简单的爬虫爬了另外一个著名的动漫图库网站:konachan.net – Konachan.com Anime Wallpapers

爬虫代码如下:

import requests from bs4 import BeautifulSoup import os import traceback def download(url, filename): if os.path.exists(filename): print('file exists!') return try: r = requests.get(url, stream=True, timeout=60) r.raise_for_status() with open(filename, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: # filter out keep-alive new chunks f.write(chunk) f.flush() return filename except KeyboardInterrupt: if os.path.exists(filename): os.remove(filename) raise KeyboardInterrupt except Exception: traceback.print_exc() if os.path.exists(filename): os.remove(filename) if os.path.exists('imgs') is False: os.makedirs('imgs') start = 1 end = 8000 for i in range(start, end + 1): url = 'http://konachan.net/post?page=%d&tags=' % i html = requests.get(url).text soup = BeautifulSoup(html, 'html.parser') for img in soup.find_all('img', class_="preview"): target_url = 'http:' + img['src'] filename = os.path.join('imgs', target_url.split('/')[-1]) download(target_url, filename) print('%d / 

转载于:https://www.cnblogs.com/baiting/p/8314936.html

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/22543.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信