【学习笔记】sklearn库基本功能介绍「建议收藏」

【学习笔记】sklearn库基本功能介绍「建议收藏」sklearn(Scikit-learn)是python中一个提供机器学习算法的库,安装Scikit-learn库地址如下:http://scikit-learn.org/stable/sklearn库的共分为6大部分,分别用于完成分类任务、回归任务、聚类任务、降维任务、模型选择以及数据的预处理。1分类任务分类任务可以用于异常检测,图像识别,对应的模型及加载模块如下:|分类模型|加载模块||最近邻算法|neighbors.NearestNeighbors||||分类(Class

大家好,欢迎来到IT知识分享网。

sklearn(Scikit-learn)是python中一个提供机器学习算法的库,是一组简单有效的工具集,其开源、可复用。sklearn库的共分为6大部分,分别用于完成分类任务、回归任务、聚类任务、降维任务、模型选择以及数据的预处理。

1.分类任务

分类模型 加载模块
最近邻算法 neighbors.NearestNeighbors
支持向量机 svm.SVC
朴素贝叶斯 naive_bayes.GaussianNB
决策树 tree.DecisionTreeClassifier
集成方法 ensemble.BaggingClassifier
神经网络 neural_network.MLPClassifier

2.回归任务

回归模型 加载模块
岭回归 linear_model.Ridge
Lasso回归 linear_model.Lasso
弹性网络 linear_model.ElasticNet
最小角回归 linear_model.Lars
贝叶斯回归 linear_model.BayesianRidge
逻辑回归 linear_model.LogisticRegression
多项式回归 preprocessing. PolynomialFeatures

3.聚类

聚类方法 加载模块
K-means cluster.KMeans
AP聚类 cluster.AffinityPropagation
均值漂移 cluster.MeanShift
层次聚类 cluster.AgglomerativeClustering
DBSCAN cluster.DBSCAN
BIRCH cluster.Birch
谱聚类 cluster.SpectralClustering

4.降维任务

降维方法 加载模块
主成分分析 decomposition.PCA
截断SVD和LSA decomposition.TruncatedSVD
字典学习 decomposition.SparseCoder
因子分析 decomposition.FactorAnalysis
独立成分分析 decomposition.FastICA
非负矩阵分解 decomposition.NMF
LDA decomposition.LatentDirichletAllocation

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/25409.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信