重采样(Resampling)

重采样(Resampling)重采样重采样的主要方法有残差重采样、多项式重采样、最优重采样、分层重采样和最优传输重采样等。(说实话我还没搞清楚和信号处理那边差不多的上下重采样之类之间的关系)这篇文章介绍的重采样是针对之前提到的蒙特卡罗序列采样时为了避免重要性权重过大导致小部分粒子占据大部分权重,选择用粒子数目来表示比例的一

大家好,欢迎来到IT知识分享网。

重采样

重采样的主要方法有残差重采样、多项式重采样、最优重采样、分层重采样和最优传输重采样等。
(说实话我还没搞清楚和信号处理那边差不多的上下重采样之类之间的关系)
这篇文章介绍的重采样是针对之前提到的蒙特卡罗序列采样时为了避免重要性权重过大导致小部分粒子占据大部分权重,选择用粒子数目来表示比例的一种想法。可以看做是权的另一种体现方式,以数目取胜!

多项式重采样

多项式重采样包含了多项分布的意思,给每个值赋权重采样得到最后哪些粒子会再次采样。

分层重采样

分层抽样是先将空间划分为几部分(层),在每一部分上均匀找点看落在哪些粒子的区间内,哪些粒子就进行重采样。
下面这张图是在介绍分层重采样:
重采样(Resampling)
其中虚线是分的层,实线之间的分隔是粒子权重。根据在各层采样的点在粒子之间的散落情况,可以看到第1个粒子采样1次,第2个采样2次,第3和4个不采样,第5个采样一次。
在图2(下一张图)中可以看到分层采样的采样矩阵。根据权重w的限制条件,首先把1填上,然后根据行和 列和的条件依次填充构造采样矩阵。在论文《Stratification and Optimal Resampling for Sequential Monte Carlo》中定义了一种阶梯型矩阵。这种矩阵除了要满足我们知道的阶梯型矩阵的条件外,任取两行两列四个边角元素左下右上对角线至少有一个为0。所以在提及的这种分层重采样矩阵中具有唯一性。

残差重采样

残差采样,顾名思义 用剩下的去采样。文章中介绍了两种 一种是多项式残差重采样,另一种是分层残差重采样。保留了原来的多项式和分层的特征 先填好1 然后按照各自方法的特征进行分配
重采样(Resampling)

总结

放一张图防止自己以后看不懂自己写的内容-_-
重采样(Resampling)

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/30191.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信