大家好,欢迎来到IT知识分享网。
原文链接:https://www.jianshu.com/p/f0ed06cd5003
import pandas as pd
df = pd.DataFrame(……)
说明:以下“df”为DataFrame对象。
1. df. sort_values()
作用:既可以根据列数据,也可根据行数据排序。
注意:必须指定by参数,即必须指定哪几行或哪几列;无法根据index名和columns名排序(由.sort_index()执行)
调用方式
DataFrame.sort_values(by, axis=0, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’)
axis:{0 or ‘index’, 1 or ‘columns’}, default 0,默认按照列排序,即纵向排序;如果为1,则是横向排序。
by:str or list of str;如果axis=0,那么by=”列名”;如果axis=1,那么by=”行名”。
ascending:布尔型,True则升序,如果by=[‘列名1′,’列名2’],则该参数可以是[True, False],即第一字段升序,第二个降序。
inplace:布尔型,是否用排序后的数据框替换现有的数据框。
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心。
na_position:{‘first’, ‘last’}, default ‘last’,默认缺失值排在最后面。
例:
原数据
df = pd.DataFrame({'b':[1,2,3,2],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3]) b a c 2 1 4 1 0 2 3 3 1 3 2 8 3 2 1 2
1.按b列升序排序
df.sort_values(by='b') #等同于df.sort_values(by='b',axis=0) b a c 2 1 4 1 0 2 3 3 3 2 1 2 1 3 2 8
2.先按b列降序,再按a列升序排序
df.sort_values(by=['b','a'],axis=0,ascending=[False,True]) b a c 1 3 2 8 3 2 1 2 0 2 3 3 2 1 4 1
3.按行3升序排列
df.sort_values(by=3,axis=1) #必须指定axis=1 a b c 2 4 1 1 0 3 2 3 1 2 3 8 3 1 2 2
4.按行3升序,行0降排列
df.sort_values(by=[3,0],axis=1,ascending=[True,False]) a c b 2 4 1 1 0 3 3 2 1 2 8 3 3 1 2 2
注意:指定多列(多行)排序时,先按排在前面的列(行)排序,如果内部有相同数据,再对相同数据内部用下一个列(行)排序,以此类推。如何内部无重复数据,则后续排列不执行。即首先满足排在前面的参数的排序,再排后面参数
2. df. sort_index()
作用:默认根据行标签对所有行排序,或根据列标签对所有列排序,或根据指定某列或某几列对行排序。
注意:df. sort_index()可以完成和df. sort_values()完全相同的功能,但python更推荐用只用df. sort_index()对“根据行标签”和“根据列标签”排序,其他排序方式用df.sort_values()。
调用方式
sort_index(axis=0, level=None, ascending=True, inplace=False, kind=’quicksort’, na_position=’last’, sort_remaining=True, by=None)
axis:0按照行名排序;1按照列名排序
level:默认None,否则按照给定的level顺序排列—貌似并不是,文档
ascending:默认True升序排列;False降序排列
inplace:默认False,否则排序之后的数据直接替换原来的数据框
kind:排序方法,{‘quicksort’, ‘mergesort’, ‘heapsort’}, default ‘quicksort’。似乎不用太关心。
na_position:缺失值默认排在最后{“first”,”last”}
by:按照某一列或几列数据进行排序,但是by参数貌似不建议使用
例:
源数据
import pandas as pd df = pd.DataFrame({'b':[1,2,2,3],'a':[4,3,2,1],'c':[1,3,8,2]},index=[2,0,1,3]) b a c 2 1 4 1 0 2 3 3 1 3 2 8 3 2 1 2
1.默认按“行标签”升序排列(推荐)
df.sort_index() #默认按“行标签”升序排序,或df.sort_index(axis=0, ascending=True) b a c 0 2 3 3 1 3 2 8 2 1 4 1 3 2 1 2
2.按“列标签”升序排列(推荐)
df.sort_index(axis=1) #按“列标签”升序排序 a b c 2 4 1 1 0 3 2 3 1 2 3 8 3 1 2 2
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/34375.html