手把手教姐姐写消息队列(golang-channel实现)

手把手教姐姐写消息队列(golang-channel实现)这周姐姐入职了新公司,老板想探探他的底,看了一眼他的简历,呦呵,精通kafka,这小姑娘有两下子,既然这样,那你写一个消息队列吧。

大家好,欢迎来到IT知识分享网。

源码地址:https://github.com/asong2020/Golang_Dream/tree/master/code_demo/queue

本文作者:asong

原文地址:https://studygolang.com/articles/30780

前言

这周姐姐入职了新公司,老板想探探他的底,看了一眼他的简历,呦呵,精通kafka,这小姑娘有两下子,既然这样,那你写一个消息队列吧。因为要用go语言写,这可给姐姐愁坏了。赶紧来求助我,我这么坚贞不屈一人,在姐姐的软磨硬泡下还是答应他了,所以接下来我就手把手教姐姐怎么写一个消息队列。下面我们就来看一看我是怎么写的吧~~~。

本代码已上传到我的github:https://github.com/asong2020/Golang_Dream/tree/master/code_demo/queue

有需要的小伙伴,可自行下载,顺便给个小星星吧~~~

什么是消息队列

姐姐真是把我愁坏了,自己写的精通 kafka ,竟然不知道什么是消息队列,于是,一向好脾气的我开始给姐姐讲一讲什么是消息队列。

消息队列,我们一般称它为 MQ(Message Queue) ,两个单词的结合,这两个英文单词想必大家都应该知道吧,其实最熟悉的还是 Queue 吧,即队列。队列是一种先进先出的数据结构,队列的使用还是比较普遍的,但是已经有队列了,怎么还需要 MQ 呢?

我:问你呢,姐姐,知道吗?为什么还需要 MQ

姐姐:快点讲,想挨打呀?

我:噗。。。 算我多嘴,哼~~~

欠欠的我开始了接下来的耐心讲解……

举一个简单的例子,假设现在我们要做一个系统,该登陆系统需要在用户登陆成功后,发送封邮件到用户邮箱进行提醒,需求还是很简单的,我们先开看一看没有 MQ ,我们该怎么实现呢?画一个时序图来看一看:

手把手教姐姐写消息队列(golang-channel实现)

看这个图,邮件发送在请求登陆时进行,当密码验证成功后,就发送邮件,然后返回登陆成功。这样是可以的,但是他是有缺陷的。这让我们的登陆操作变得复杂了,每次请求登陆都需要进行邮件发送,如果这里出现错误,整个登陆请求也出现了错误,导致登陆不成功;还有一个问题,本来我们登陆请求调用接口仅仅需要100ms,因为中间要做一次发送邮件的等待,那么调用一次登陆接口的时间就要增长,这就是问题所在,一封邮件他的优先级 不是很高的,用户也不需要实时收到这封邮件,所以这时,就体现了消息队列的重要性了,我们用消息队列进行改进一下。

手把手教姐姐写消息队列(golang-channel实现)

这里我们将发送邮件请求放到 Mq 中,这样我们就能提高用户体验的吞吐量,这个很重要,顾客就是上帝嘛,毕竟也没有人喜欢用一个很慢很慢的app。

这里只是举了 MQ 众多应用中的其中一个,即异步应用, MQ 还在系统解藕、削峰/限流中有着重要应用,这两个我就不具体讲解了,原理都一样,好好思考一下,你们都能懂得。

channel

好啦,姐姐终于知道什么是消息队列了,但是现在还是没法进行消息队列开发的,因为还差一个知识点,即go语言中的 channel 。这个很重要,我们还需要靠这个来开发我们的消息队列呢。

因篇幅有限,这里不详细介绍 channel ,只介绍基本使用方法。

什么是 channel

Goroutine 和 Channel 是 Go 语言并发编程的两大基石。Goroutine 用于执行并发任务,Channel 用于 goroutine 之间的同步、通信。Go提倡使用通信的方法代替共享内存,当一个Goroutine需要和其他Goroutine资源共享时,Channel就会在他们之间架起一座桥梁,并提供确保安全同步的机制。 channel 本质上其实还是一个队列,遵循FIFO原则。具体规则如下:

  • 先从 Channel 读取数据的 Goroutine 会先接收到数据;
  • 先向 Channel 发送数据的 Goroutine 会得到先发送数据的权利;

创建通道

创建通道需要用到关键字 make ,格式如下:

通道实例 := make(chan 数据类型)
  • 数据类型:通道内传输的元素类型。
  • 通道实例:通过make创建的通道句柄。

无缓冲通道的使用

Go语言中无缓冲的通道(unbuffered channel)是指在接收前没有能力保存任何值的通道。这种类型的通道要求发送 goroutine 和接收 goroutine 同时准备好,才能完成发送和接收操作。

无缓冲通道的定义方式如下:

通道实例 := make(chan 通道类型)
  • 通道类型:和无缓冲通道用法一致,影响通道发送和接收的数据类型。
  • 缓冲大小:0
  • 通道实例:被创建出的通道实例。

写个例子来帮助大家理解一下吧:

package main import ( "sync" "time" ) func main() { c := make(chan string) var wg sync.WaitGroup wg.Add(2) go func() { defer wg.Done() c <- `Golang梦工厂` }() go func() { defer wg.Done() time.Sleep(time.Second * 1) println(`Message: `+ <-c) }() wg.Wait() }

带缓冲的通道的使用

Go语言中有缓冲的通道(buffered channel)是一种在被接收前能存储一个或者多个值的通道。这种类型的通道并不强制要求 goroutine 之间必须同时完成发送和接收。通道会阻塞发送和接收动作的条件也会不同。只有在通道中没有要接收的值时,接收动作才会阻塞。只有在通道没有可用缓冲区容纳被发送的值时,发送动作才会阻塞。

有缓冲通道的定义方式如下:

通道实例 := make(chan 通道类型, 缓冲大小)
  • 通道类型:和无缓冲通道用法一致,影响通道发送和接收的数据类型。
  • 缓冲大小:决定通道最多可以保存的元素数量。
  • 通道实例:被创建出的通道实例。

来写一个例子讲解一下:

package main import ( "sync" "time" ) func main() { c := make(chan string, 2) var wg sync.WaitGroup wg.Add(2) go func() { defer wg.Done() c <- `Golang梦工厂` c <- `asong` }() go func() { defer wg.Done() time.Sleep(time.Second * 1) println(`公众号: `+ <-c) println(`作者: `+ <-c) }() wg.Wait() }

好啦,通道的概念就介绍到这里了,如果需要,下一篇我出一个 channel 详细讲解的文章。

消息队列编码实现

准备篇

终于开始进入主题了,姐姐都听的快要睡着了,我轰隆一嗓子,立马精神,但是呢,asong也是挨了一顿小电炮,代价惨痛呀,呜呜呜…………

在开始编写代码编写直接,我需要构思我们的整个代码架构,这才是正确的编码方式。我们先来定义一个接口,把我们需要实现的方法先列出来,后期对每一个代码进行实现就可以了。因此可以列出如下方法:

type Broker interface { publish(topic string, msg interface{}) error subscribe(topic string) (<-chan interface{}, error) unsubscribe(topic string, sub <-chan interface{}) error close() broadcast(msg interface{}, subscribers []chan interface{}) setConditions(capacity int) }
  • publish :进行消息的推送,有两个参数即 topicmsg ,分别是订阅的主题、要传递的消息
  • subscribe :消息的订阅,传入订阅的主题,即可完成订阅,并返回对应的 channel 通道用来接收数据
  • unsubscribe :取消订阅,传入订阅的主题和对应的通道
  • close :这个的作用就是很明显了,就是用来关闭消息队列的
  • broadCast :这个属于内部方法,作用是进行广播,对推送的消息进行广播,保证每一个订阅者都可以收到
  • setConditions :这里是用来设置条件,条件就是消息队列的容量,这样我们就可以控制消息队列的大小了

细心的你们有没有发现什么问题,这些代码我都定义的是内部方法,也就是包外不可用。为什么这么做呢,因为这里属于代理要做的事情,我们还需要在封装一层,也就是客户端能直接调用的方法,这样才符合软件架构。因此可以写出如下代码:

package mq type Client struct { bro *BrokerImpl } func NewClient() *Client { return &Client{ bro: NewBroker(), } } func (c *Client)SetConditions(capacity int) { c.bro.setConditions(capacity) } func (c *Client)Publish(topic string, msg interface{}) error{ return c.bro.publish(topic,msg) } func (c *Client)Subscribe(topic string) (<-chan interface{}, error){ return c.bro.subscribe(topic) } func (c *Client)Unsubscribe(topic string, sub <-chan interface{}) error { return c.bro.unsubscribe(topic,sub) } func (c *Client)Close() { c.bro.close() } func (c *Client)GetPayLoad(sub <-chan interface{}) interface{}{ for val:= range sub{ if val != nil{ return val } } return nil }

上面只是准好了代码结构,但是消息队列实现的结构我们还没有设计,现在我们就来设计一下。

type BrokerImpl struct { exit chan bool capacity int topics map[string][]chan interface{} // key: topic value : queue sync.RWMutex // 同步锁 }
  • exit :也是一个通道,这个用来做关闭消息队列用的
  • capacity :即用来设置消息队列的容量
  • topics :这里使用一个map结构,key即是 topic ,其值则是一个切片, chan 类型,这里这么做的原因是我们一个topic可以有多个订阅者,所以一个订阅者对应着一个通道
  • sync.RWMutex :读写锁,这里是为了防止并发情况下,数据的推送出现错误,所以采用加锁的方式进行保证

好啦,现在我们已经准备的很充分啦,开始接下来方法填充之旅吧~~~

Publishbroadcast

这里两个合在一起讲的原因是 braodcast 是属于 publish 里的。这里的思路很简单,我们只需要把传入的数据进行广播即可了,下面我们来看代码实现:

func (b *BrokerImpl) publish(topic string, pub interface{}) error { select { case <-b.exit: return errors.New("broker closed") default: } b.RLock() subscribers, ok := b.topics[topic] b.RUnlock() if !ok { return nil } b.broadcast(pub, subscribers) return nil } func (b *BrokerImpl) broadcast(msg interface{}, subscribers []chan interface{}) { count := len(subscribers) concurrency := 1 switch { case count > 1000: concurrency = 3 case count > 100: concurrency = 2 default: concurrency = 1 } pub := func(start int) { for j := start; j < count; j += concurrency { select { case subscribers[j] <- msg: case <-time.After(time.Millisecond * 5): case <-b.exit: return } } } for i := 0; i < concurrency; i++ { go pub(i) } }

publish 方法中没有什么好讲的,这里主要说一下 broadcast 的实现:

这里主要对数据进行广播,所以数据推送出去就可以了,没必要一直等着他推送成功,所以这里我们我们采用 goroutine 。在推送的时候,当推送失败时,我们也不能一直等待呀,所以这里我们加了一个超时机制,超过5毫秒就停止推送,接着进行下面的推送。

可能你们会有疑惑,上面怎么还有一个 switch 选项呀,干什么用的呢?考虑这样一个问题,当有大量的订阅者时,,比如10000个,我们一个for循环去做消息的推送,那推送一次就会耗费很多时间,并且不同的消费者之间也会产生延时,,所以采用这种方法进行分解可以降低一定的时间。

subscribeunsubScribe

我们先来看代码:

func (b *BrokerImpl) subscribe(topic string) (<-chan interface{}, error) { select { case <-b.exit: return nil, errors.New("broker closed") default: } ch := make(chan interface{}, b.capacity) b.Lock() b.topics[topic] = append(b.topics[topic], ch) b.Unlock() return ch, nil } func (b *BrokerImpl) unsubscribe(topic string, sub <-chan interface{}) error { select { case <-b.exit: return errors.New("broker closed") default: } b.RLock() subscribers, ok := b.topics[topic] b.RUnlock() if !ok { return nil } // delete subscriber var newSubs []chan interface{} for _, subscriber := range subscribers { if subscriber == sub { continue } newSubs = append(newSubs, subscriber) } b.Lock() b.topics[topic] = newSubs b.Unlock() return nil }

这里其实就很简单了:

  • subscribe :这里的实现则是为订阅的主题创建一个 channel ,然后将订阅者加入到对应的 topic 中就可以了,并且返回一个接收 channel
  • unsubScribe :这里实现的思路就是将我们刚才添加的 channel 删除就可以了。

close

func (b *BrokerImpl) close() { select { case <-b.exit: return default: close(b.exit) b.Lock() b.topics = make(map[string][]chan interface{}) b.Unlock() } return }

这里就是为了关闭整个消息队列,这句代码 b.topics = make(map[string][]chan interface{}) 比较重要,这里主要是为了保证下一次使用该消息队列不发生冲突。

setConditions GetPayLoad

还差最后两个方法,一个是设置我们的消息队列容量,另一个是封装一个方法来获取我们订阅的消息:

func (b *BrokerImpl)setConditions(capacity int) { b.capacity = capacity } func (c *Client)GetPayLoad(sub <-chan interface{}) interface{}{ for val:= range sub{ if val != nil{ return val } } return nil }

测试

好啦,代码这么快就被写完了,接下来我们进行测试一下吧。

单元测试

正式测试之前,我们还是需要先进行一下单元测试,养成好的习惯,只有先自测了,才能有底气说我的代码没问题,要不直接跑程序,会出现很多 bug 的。

这里我们测试方法如下:我们向不同的 topic 发送不同的信息,当订阅者收到消息后,就行取消订阅。

func TestClient(t *testing.T) { b := NewClient() b.SetConditions(100) var wg sync.WaitGroup for i := 0; i < 100; i++ { topic := fmt.Sprintf("Golang梦工厂%d", i) payload := fmt.Sprintf("asong%d", i) ch, err := b.Subscribe(topic) if err != nil { t.Fatal(err) } wg.Add(1) go func() { e := b.GetPayLoad(ch) if e != payload { t.Fatalf("%s expected %s but get %s", topic, payload, e) } if err := b.Unsubscribe(topic, ch); err != nil { t.Fatal(err) } wg.Done() }() if err := b.Publish(topic, payload); err != nil { t.Fatal(err) } } wg.Wait() }

测试通过,没问题,接下来我们写几个方法测试一下

测试

这里分为两种方式测试

测试一:使用一个定时器,向一个主题定时推送消息.

// 一个topic 测试 func OnceTopic() { m := mq.NewClient() m.SetConditions(10) ch,err :=m.Subscribe(topic) if err != nil{ fmt.Println("subscribe failed") return } go OncePub(m) OnceSub(ch,m) defer m.Close() } // 定时推送 func OncePub(c *mq.Client) { t := time.NewTicker(10 * time.Second) defer t.Stop() for { select { case <- t.C: err := c.Publish(topic,"asong真帅") if err != nil{ fmt.Println("pub message failed") } default: } } } // 接受订阅消息 func OnceSub(m <-chan interface{},c *mq.Client) { for { val := c.GetPayLoad(m) fmt.Printf("get message is %sn",val) } }

测试二:使用一个定时器,定时向多个主题发送消息:

//多个topic测试 func ManyTopic() { m := mq.NewClient() defer m.Close() m.SetConditions(10) top := "" for i:=0;i<10;i++{ top = fmt.Sprintf("Golang梦工厂_%02d",i) go Sub(m,top) } ManyPub(m) } func ManyPub(c *mq.Client) { t := time.NewTicker(10 * time.Second) defer t.Stop() for { select { case <- t.C: for i:= 0;i<10;i++{ //多个topic 推送不同的消息 top := fmt.Sprintf("Golang梦工厂_%02d",i) payload := fmt.Sprintf("asong真帅_%02d",i) err := c.Publish(top,payload) if err != nil{ fmt.Println("pub message failed") } } default: } } } func Sub(c *mq.Client,top string) { ch,err := c.Subscribe(top) if err != nil{ fmt.Printf("sub top:%s failedn",top) } for { val := c.GetPayLoad(ch) if val != nil{ fmt.Printf("%s get message is %sn",top,val) } } }

总结

终于帮助姐姐解决了这个问题,姐姐开心死了,给我一顿亲,啊不对,是一顿夸,夸的人家都不好意思了。

这一篇你学会了吗?没学会不要紧,赶快去把源代码下载下来,好好通读一下,很好理解的~~~。

源码地址:https://github.com/asong2020/Golang_Dream/tree/master/code_demo/queue

本文作者:asong

原文地址:https://studygolang.com/articles/30780

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/50020.html

(0)
上一篇 2024-08-26 13:45
下一篇 2024-08-28 07:26

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信