从Golang调度器的作者视角探究其设计之道

从Golang调度器的作者视角探究其设计之道本文是笔者结合自身经验和认知的一点观后感,采用从零开始层层递进的方法,总结剖析了其背后的软件设计思想,希望对读者更好地理解goroutine调度

大家好,欢迎来到IT知识分享网。

导语 | Golang核心开发人员、goroutine调度的设计者Dmitry Vyukov,在2019年的一个talk里深入浅出地阐述了goroutine调度的设计思想以及一些优化的细节。本文是笔者结合自身经验和认知的一点观后感,采用从零开始层层递进的方法,总结剖析了其背后的软件设计思想,希望对读者更好地理解goroutine调度GMP模型会有所帮助。


前言


视频地址:

https://2019.hydraconf.com/2019/talks/7336ginp0kke7n4yxxjvld/


这个视频我以前看过,近几天刷到便又看了一遍,真是有听君一席话受益匪浅之感。毫不夸张地说,本视频在笔者看过的所有资料中,对于GMP为什么要有Processor这点,讲得最为清楚。视频中对goroutine调度模型的讲解,真可谓深入浅出!下面笔者将自己的一些观感整理分享给大家,还没看过视频的同学,建议先看完本文再去看,收获会更大。


为了表达方便,本文会沿用golang里面的GMP缩写:


  • G —— goroutine

  • M —— 机器线程

  • P —— 对处理器的抽象



一、设计并发编程模型


goroutine调度的设计目标,其实就是设计一种高效的并发编程模型:


  • 从开发的角度只需要一个关键词(go)就能创建一个执行会话,很方便使用,即开发效率是高效的。


  • 从运行态的角度,上述创建的会话也能高效的被调度执行,即运行效率也是高效的。


我们可以近似将goroutine看待为协程(一些代码逻辑+一个栈上下文),如果读者用C/C++造过协程框架的轮子,会很容易理解这点。


:除了高效之外,还有其他几个目标,如无大小限制的goroutine栈,公平的调度策略等。



二、从零开始:从多线程说起


想要实现并发的执行流,最直截了当的,自然就是多线程。由此便得出初始思路:每个goroutine对应一个线程


从并发的功能角度来讲,该方案固然可以实现并发,但性能方面却很不堪,尤其是在并发很重的时候,成千上万个线程的资源占用、创建销毁、调度带来的开销会很巨大。


三、更进一步:线程池的方案


既然线程太多不好,那我们可以很轻易地做出一点改善,控制一下线程数量,如此便得到更进一步的方案:线程池,限定只启动N个线程。


由于该方案下,可能是M个goroutine,N个线程,因而显然需要考虑一个问题:对于一个goroutine,它到底该由哪个线程去执行?我们可以简单地采用一个全局的Global Run Queue,然后让所有线程主动去获取goroutine来执行,示意如下:


从Golang调度器的作者视角探究其设计之道


这样做在线程少的时候,如果调度行为不是很频繁,可能问题不大。但当线程较多时,就会有scalable的问题,mutex的互斥竞争会非常激烈(考虑到基于时间片的抢占行为,实际上调度必然是很频繁的)。



四、初具雏形:线程分治


在多线程编程领域中,互斥处理可以称得上是“名声在外”,需极其小心地去应对。最常见的解决方案,并不是如何精妙地去lock free,而是直接通过 “数据分治”和“逻辑分治”来避免做复杂的加锁互斥,将各个线程按横向(载荷分组)或纵向(逻辑划分)进行切分来处理工作。


通过数据分治的思想,我们就可以得到改进的方案:每个线程分别处理一批G,进行线程分治。将所有G分开放到各线程自己的存储中,即所谓的Local Run Queue中。示意如下:


从Golang调度器的作者视角探究其设计之道


:Global Run Queue也还继续存在的,有关它存在的细节非本文重点,这里不做展开。


至此,调度模型已具雏形。


让我们继续分析确认一下,该模型是否真的解决了scalable的问题。上述模型下,为了充分利用CPU,每个线程要按一定的策略去Steal其他线程Local Run Queue里面的G来执行,以免线程之间存在load balance问题(有些太闲,有些又太忙)


因此在线程很多的时候,存在大量的无意义加锁Steal操作,因为其他线程的Local Run Queue可能也常常都是空的。还有另一个问题,由于现在的一些内存资源是绑定在线程上面的,会导致线程数量和资源占用规模紧耦合。当线程数量多的时候,资源消耗也会比较大。


注:在N核的机器环境下,假如我们设定线程池大小为N,由于系统调用的存在(关于系统调用的处理见后文),实际的线程数量会超过N。



五、趋于完善:将资源和线程解耦


既然每个线程一份资源也不合适,那么我们可以仿照线程池的思路,单独做一个资源池,做计算存储分离:把Local Run Queue及相关存储资源都挪出去,并依然限定全局一共N份,即可实现资源规模与系统中的真实线程数量的解耦。线程每次从对应的数据结构(Processor)中获取goroutine去执行,Local Run Queue及其他一些相关存储资源都挂在Processor下。这样加一层Processor的抽象之后,便得到众所周知的GMP模型:


从Golang调度器的作者视角探究其设计之道


现在的调度模型已趋于完善,不过前面我们主要侧重讲的是如何高效,还未讨论到调度的另一个关键问题:公平性与抢占,接下来我们看看如何实现抢占。



六、还要公平:调度抢占


参考操作系统CPU的调度策略,通常各进程会分时间片,时间片用完了就轮到其他进程。在golang里也可以如此,不能让一些goroutine长期霸占着运行资源不退出,必须实现基于时间片的“抢占”。


那怎么抢占呢,需要监测goroutine执行时间片是否用完了。如果要检查系统中的各种状态变化、事件发生情况,通常会有中断与轮询两种思路,中断是由一个中控方来做检查与控制,而轮询则是各个参与方按一定的策略主动check询问。因此对于goroutine抢占而言,有以下两种解决方案:


  • Signals,通过信号来中断原来的线程执行。


  • Cooperative checks,通过线程间歇性轮询自己check运行的时间片情况来主动暂停。


二者的优劣对比如下:


从Golang调度器的作者视角探究其设计之道


因为golang其实是有runtime的,而且代码编译生成也都是golang编译器控制的,综合优劣分析,选择后者会比较合理。


对于Cooperative checks的方案,从代码编译生成的角度看,很容易做check指令的埋点。且因为golang本来就要做动态增长栈,在函数入口处会插入检查是否该扩栈的指令,正好利用这一点来做相关的检查实现(这里有一些优化细节,可以使得基于时间片的抢占开销也较小)


插入check指令的做法,会导致该方案存在一个理论缺陷:若有一个死循环,里面的所有代码都不包含check指令,那依然会无法抢占,不过现实中基本不存在这种情况,总会做函数调用、访问channel等类似操作,因此不足为虑。


除此以外还有一个系统调用的问题,当线程一旦进入系统调用后,也会脱离runtime的控制。试想万一系统调用阻塞了呢,基于Cooperative checks的方案,此时又无法进行抢占,是不是整个线程也就罢工了。所以为了维持整个调度体系的高效运转,必然要在进入系统调用之前要做点什么以防患未然。Dmitry这里采用的办法也很直接,对于即将进入系统调用的线程,不做抢占,而是由它主动让出执行权。线程A在系统调用之前handoff让出Processor的执行权,唤醒一个idle线程B来做交接。当线程A从系统调用返回时,不会继续执行,而是将G放到run queue,然后进入idle状态等待唤醒,这样一来便能确保活跃线程数依然与Processor数量相同。



七、设计思想的小结


这里recap一下,把前文涉及到的一些软件设计思想罗列如下:


  • 线程池,通过多线程提供更大的并发处理能力,同时又避免线程过多带来的过大开销。


  • 资源池,对有一定规模约束的资源进行池化管理,如内存池、机器池、协程池等,前面的线程池也可以算作此类。


  • 计算存储分离,分别从逻辑、数据结构两个角度进行设计,规划二者的耦合关系。


加一层,这个是万能大法,不赘述。


  • 中断与轮询,用于监测系统中的各种状态变化、事件变化,通常来讲中断会比轮询更高效。



八、视频的其他内容


本文的重点在GMP模型,因此视频里还有一些其他的内容,文中并未详细展开:


  • Local Run Queue里面的G所创建的G会放到同样的Local Run Queue(如果满了还是会放GRQ),而且会限制被偷走,这样可以加强Locality,同时为了保证公平也做了时间片继承,以免不停创建G会长期霸占运行资源。


  • 被抢占的G会放到全局的G队列(Global Run Queue),GRQ会每61次tick检查一次,Dmitry针对这个61解释了一番,但笔者认为还是有点拍脑袋的感觉。


  • G的栈采用的是Growable stack方案,在函数入口会有栈检查的指令,如需扩容栈,会拷贝到新申请的更大的栈。


  • Go runtime还会用Background thread来运行一些相对特别的G(如 Network Poller、Timer)。


以上这些内容,大家可以去视频学习。


:本文基于2019的talk,不知最新版本的调度机制是否有进一步的调整,不过无论调整与否,这并不妨碍我们对GMP设计思想的学习。



九、进一步的改进


同学在与笔者讨论时提了一个问题:还可以怎么继续优化,这真的是一个非常好的问题,这里将该问题的回答也放入文章。


不单纯针对GMP,话题稍微放大一点,下面简单聊聊goroutine调度机制的一些优化可能。


Dmitry自己在视频最后说的future work方向:


  • 在很多cpu core的情况下,活跃线程数比较多,work steal的开销依旧有些浪费。


  • 死循环不含cooperative check指令的这种edge情况的还没解决。


  • 对于网络和timer的goroutine处理是使用全局方式的,不好scale。


以下纯属个人探讨:


  • 首先整体上现在的模型已经比较完善,如何进一步优化要看实践场景遇到的问题,以及profile数据情况,只有问题和数据明确了,才清楚进一步工作的宏观重点(工作中也是,做性能优化需要有宏观视角)。

  • 因为goroutine调度是属于协程类的调度,这里或许可以借鉴原来各种协程框架的思路做一些对比考虑。


  • 由于笔者并没细看过代码,不大清楚work steal的overhead构成,或许可以设计其他的rebalance方式,例如换个视角,不是去steal,而是由runtime统一rebalance再收集派发。


目前就先想到这些,欢迎讨论。



十、欢乐游戏的协程框架


基于上面那个问题的回答,这里也补充介绍一下欢乐游戏协程框架(基于C++)中采用的处理机制,因为是纯业务自用,所以从设计要求上就低很多,不少点直接都可以不去考虑(这也说明了,有些时候再好的既有流行方案,从性能上讲可能也比不过自家的破轮子,当然自家的轮子泛化不足,肯定普适性就会差很多)


  • 协程调度采用最简单的单线程模型


  • 设计之初就没考虑用多线程充分利用多核资源,我们认为直接多部署一些进程就好。


  • 对于一定要把单进程承载做的很高的极少数场景,可以专事专办,做专门的方案即可。



  • 协程采用固定的栈大小


  • 通常几百k就够了(例如256k或者512k),创建协程的时候就预分配好。


  • 这点确实不如growable stack那么高明,但是从实践看也算够了,这样就免去了stack动态增长的工作(从应用编程的视角看,其实C++里我们可能因为无法做指令插入埋点,本来就做不到stack动态增长)。


  • 我们在相邻stack之间加一些写保护page,这样一旦踩了就会 coredump。


  • 同时通过编译选项,限制单层栈大小不能超过某个阈值。



  • 协程调度完全不考虑公平性,全部采用主动handoff策略


    对于某个协程,如果它要持续运行,就任它运行,直到要进行阻塞类操作(典型如RPC调用),才会交出执行权。实际上对于业务来讲,微观层面几十毫秒内哪个协程多占了一点执行权真的无所谓,不用太讲究公平性。假如真的有些协程饿死了,那说明业务都已经过载了(就是时时刻刻都在跑其他协程,cpu100),此时讨论公平也没什么意义了。假如我们真的要做,因为做不到指令插入,只能采用Signals信号中断的方式,在注册的信号处理函数中直接按需切栈。



  • 主协程主控循环tick直接管理协程,协程调度不涉及background thread


  • 网络IO、第三方异步API tick驱动、timer管理、协程创建销毁管理等都是主协程在做。


  • 主控循环中,如果要创建或恢复协程,就任由它去立即执行,一直跑到它阻塞挂起再返回主协程。

从Golang调度器的作者视角探究其设计之道


协程切换示意图,图注:1、2、5在主协程,3、4在业务协程,主协程和业务协程都在主线程内。

  • 仍可以有基于逻辑分治的多线程


  • 框架不是真的只有一个线程,按功能拆分的日志线程,依然可以存在。


  • 对于一些第三方异步API,如果其tick本身实现不好,导致大量占据了运行时间,也可以分拆线程,然后用队列之类的机制和主线程的主协程交互即可。


  • 对于网络IO也同上。


总之,这种基于逻辑分治做线程拆分的改造都是很简单的,也并不会影响到核心协程调度的机制。

作者简介


吴连火

腾讯游戏专家开发工程师


腾讯游戏专家开发工程师,负责欢乐游戏大规模分布式服务器架构。有十余年微服务架构经验,擅长分布式系统领域,有丰富的高性能高可用实践经验,目前正带领团队完成云原生技术栈的全面转型。

本文由高可用架构翻译。技术原创及架构实践文章,欢迎通过公众号菜单「联系我们」进行投稿。


高可用架构
改变互联网的构建方式



免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/51353.html

(0)
上一篇 2024-08-19 13:45
下一篇 2024-08-21 10:15

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信