可以降低阶乘运算复杂度的Stirling公式

可以降低阶乘运算复杂度的Stirling公式转发一个关于Stirling公式的推导方法:Wallis公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到

大家好,欢迎来到IT知识分享网。

转发一个关于Stirling公式的推导方法:

Wallis公式是关于圆周率的无穷乘积的公式,但Wallis公式中只有乘除运算,连开方都不需要,形式上十分简单。虽然Wallis公式对π的近似计算没有直接影响,但是在导出Stirling公式中起到了重要作用。

可以降低阶乘运算复杂度的Stirling公式

可以降低阶乘运算复杂度的Stirling公式

斯特林公式(Stirling’s approximation)是一条用来取n的阶乘的近似值的数学公式。一般来说,阶乘的计算复杂度为线性。当要为某些极大大的n求阶乘时,常见的方法复杂度不可接受。斯特林公式能够将求解阶乘的复杂度降低到对数级。而且,即使在n很小的时候,斯特林公式的取值已经十分准确。

斯特林公式在理论和应用上都具有重要的价值,对于概率论的发展也有着重大的意义。在数学分析中,大多都是利用Г函数、级数和含参变量的积分等知识进行证明或推导,很为繁琐冗长。近年来,一些国内外学者利用概率论中的指数分布、泊松分布、χ²分布证之。

利用Wallis公式推导Stirling公式:

可以降低阶乘运算复杂度的Stirling公式

Stirling公式的其它形式:

可以降低阶乘运算复杂度的Stirling公式

另一种证明方法:

可以降低阶乘运算复杂度的Stirling公式

从以上推导的Stirling公式的推导结果可以看出,可以对公式两边取对数,从而大幅降低求n!的运算复杂度。

免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/87003.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

关注微信