大家好,欢迎来到IT知识分享网。
对象池技术可以避免在程序的生命期中创建和删除大量对象。如果知道程序需要同一类型的大量对象,而且对象的生命周期都很短,就可以为这些对象创建一个池(pool)进行缓存。只要代码中需要一个对象,就可以向对象池请求.用完此对象时,要把它放回池中。对象池只创建一次对象,因此它们的构造函数只调用一次,而不是每次使用时都调用。因此,当构造函数要完成一些设置动作,而且这些设置可以应用与该对象的多次使用时,对象池就很适用。另外在非构造函数方法调用中要在对象上设置特定于实例的参数时,也很适用采用对象池。
一个对象池的实现
这里提供了一个池类对象的模板的实现,你可以在自己的程序中使用这个池实现。这个池在构造时会分配一大块(chunk)指定类的对象(这里的“块”,可以理解为包括许多对象,即一堆对象),并通过 acquireObject( ) 方法交出对象。当客户用完这个对象时,会通过 releaseObject( ) 方法将其返回。如果调用了 acquireObject( ) ,但是没有空闲的对象,池会分配另外一块对象。
对象池实现中最难的一方面是要记录哪些对象是空闲的,哪些对象正在使用。这个实现采用以下做法,即把空闲的对象保存在一个队列中。每次客户请求一个对象时,池就会把队列中第一个对象交个客户。这个池不会显式地跟踪正在使用的对象。它相信客户在用完对象后会正确的把对象交还到池中。另外,这个池在一个向量中记录所有已分配的对象。这个向量仅在撤销池时才会用到,以便是否所有对象的内存,从而避免内存泄露。
以下是类的定义,要注意,这个模板是基于相应的类类型(要在池中构造何种类型的对象)参数化的。
#include <queue>
#include <vector>
#include <stdexcept>
#include <memory>
using std::queue;
using std::vector;
//
// template class ObjectPool
//
// Provides an object pool that can be used with any class that provides a
// default constructor.
//
// The object pool constructor creates a pool of objects, which it hands out
// to clients when requested via the acquireObject() method. When a client is
// finished with the object it calls releaseObject() to put the object back
// into the object pool.
//
// The constructor and destructor on each object in the pool will be called only
// once each for the lifetime of the program, not once per acquisition and release.
//
// The primary use of an object pool is to avoid creating and deleting objects
// repeatedly. The object pool is most suited to applications that use large
// numbers of objects for short periods of time.
//
// For efficiency, the object pool doesn't perform sanity checks.
// Expects the user to release every acquired object exactly once.
// Expects the user to avoid using any objects that he or she has released.
//
// Expects the user not to delete the object pool until every object
// that was acquired has been released. Deleting the object pool invalidates
// any objects that the user had acquired, even if they had not yet been released.
//
template <typename T>
class ObjectPool
{
public:
//
// Creates an object pool with chunkSize objects.
// Whenever the object pool runs out of objects, chunkSize
// more objects will be added to the pool. The pool only grows:
// objects are never removed from the pool (freed), until
// the pool is destroyed.
//
// Throws invalid_argument if chunkSize is <= 0.
//
ObjectPool(int chunkSize = kDefaultChunkSize)
throw(std::invalid_argument, std::bad_alloc);
//
// Frees all the allocated objects. Invalidates any objects that have
// been acquired for use.
//
~ObjectPool();
//
// Reserve an object for use. The reference to the object is invalidated
// if the object pool itself is freed.
//
// Clients must not free the object!
//
T& acquireObject();
//
// Return the object to the pool. Clients must not use the object after
// it has been returned to the pool.
//
void releaseObject(T& obj);
protected:
//
// mFreeList stores the objects that are not currently in use
// by clients.
//
queue<T*> mFreeList;
//
// mAllObjects stores pointers to all the objects, in use
// or not. This vector is needed in order to ensure that all
// objects are freed properly in the destructor.
//
vector<T*> mAllObjects;
int mChunkSize;
static const int kDefaultChunkSize = 10;
//
// Allocates mChunkSize new objects and adds them
// to the mFreeList.
//
void allocateChunk();
static void arrayDeleteObject(T* obj);
private:
// Prevent assignment and pass-by-value
ObjectPool(const ObjectPool<T>& src);
ObjectPool<T>& operator=(const ObjectPool<T>& rhs);
};
template<typename T>
const int ObjectPool<T>::kDefaultChunkSize;
template <typename T>
ObjectPool<T>::ObjectPool(int chunkSize) throw(std::invalid_argument,
std::bad_alloc) : mChunkSize(chunkSize)
{
if (mChunkSize <= 0) {
throw std::invalid_argument("chunk size must be positive");
}
// Create mChunkSize objects to start
allocateChunk();
}
//
// Allocates an array of mChunkSize objects because that's
// more efficient than allocating each of them individually.
// Stores a pointer to the first element of the array in the mAllObjects
// vector. Adds a pointer to each new object to the mFreeList.
//
template <typename T>
void ObjectPool<T>::allocateChunk()
{
T* newObjects = new T[mChunkSize];
mAllObjects.push_back(newObjects);
for (int i = 0; i < mChunkSize; i++) {
mFreeList.push(&newObjects[i]);
}
}
//
// Freeing function for use in the for_each algorithm in the
// destructor.
//
template<typename T>
void ObjectPool<T>::arrayDeleteObject(T* obj)
{
delete [] obj;
}
template <typename T>
ObjectPool<T>::~ObjectPool()
{
// free each of the allocation chunks
for_each(mAllObjects.begin(), mAllObjects.end(), arrayDeleteObject);
}
template <typename T>
T& ObjectPool<T>::acquireObject()
{
if (mFreeList.empty()) {
allocateChunk();
}
T* obj = mFreeList.front();
mFreeList.pop();
return (*obj);
}
template <typename T>
void ObjectPool<T>::releaseObject(T& obj)
{
mFreeList.push(&obj);
}
对于这个类定义有几点需要强调。首先,要注意,对象是按引用获取和释放的,而不是按指针,这样可以避免客户通过指针管理或释放对象。接下来,注意对象池的用户通过模板参数来指定可以创建哪一个类的对象(即类名),通过构造函数指定分配的“块大小”。这个“块大小”控制着一次可创建的对象数。以下是定义 kDefaultChunkSize 的代码:
template<typename T>
const int ObjectPool<T>::kDefaultChunkSize;
根据类定义,默认值 10 对于大多数使用来说可能都太小了.如果程序一次需要成千上万的对象,就应该使用一个更大、更适合的值。
构造函数验证 chunkSize 参数,并调用 allocateChunk( ) 辅助方法来得到起始的对象分配。
template <typename T>
ObjectPool<T>::ObjectPool(int chunkSize) throw(std::invalid_argument,
std::bad_alloc) : mChunkSize(chunkSize)
{
if (mChunkSize <= 0) {
throw std::invalid_argument("chunk size must be positive");
}
// Create mChunkSize objects to start
allocateChunk();
}
allocateChunk( ) 方法在连续地存储空间中分配 mChunkSize 个元素。它会在一个 mAllObjects vector 中存储对象数组的指针,并把各个对象压至 mFreeLlist queue。
//
// Allocates an array of mChunkSize objects because that's
// more efficient than allocating each of them individually.
// Stores a pointer to the first element of the array in the mAllObjects
// vector. Adds a pointer to each new object to the mFreeList.
//
template <typename T>
void ObjectPool<T>::allocateChunk()
{
T* newObjects = new T[mChunkSize];
mAllObjects.push_back(newObjects);
for (int i = 0; i < mChunkSize; i++) {
mFreeList.push(&newObjects[i]);
}
}
析构函数只是释放 allocateChunk( ) 中分配的所有对象数组。不过,它使用了 for_each( ) STL算法来做到这一点,在此向 for_each( ) 传递一个arrayDelete( ) 静态方法的指针,这个方法会对各个对象数组具体完成删除调用。
//
// Freeing function for use in the for_each algorithm in the
// destructor.
//
template<typename T>
void ObjectPool<T>::arrayDeleteObject(T* obj)
{
delete [] obj;
}
template <typename T>
ObjectPool<T>::~ObjectPool()
{
// free each of the allocation chunks
for_each(mAllObjects.begin(), mAllObjects.end(), arrayDeleteObject);
}
acquireObject( ) 会返回空闲列表中的队头对象,如果没有空闲对象则首先调用 allocateChunk( ) 。
template <typename T>
T& ObjectPool<T>::acquireObject()
{
if (mFreeList.empty()) {
allocateChunk();
}
T* obj = mFreeList.front();
mFreeList.pop();
return (*obj);
}
最后,releaseObject( ) 将对象返回到空闲列表的队尾。
template <typename T>
void ObjectPool<T>::releaseObject(T& obj)
{
mFreeList.push(&obj);
}
使用对象池
请考虑一个要从用户得到请求并处理这些请求的应用。这个应用很可能是图形前端和后端数据库之间的一个中间件。例如,这可能是一个航空预定系统或一个在线银行应用的一部分。你可能想把每个用户请求编码到一个对象中,这个类可能如下。
class UserRequest
{
public:
UserRequest() {}
~UserRequest() {}
// Methods to populate the request with specific information.
// Methods to retrieve the request data.
// (not shown)
protected:
// data members (not shown)
};
这里不用在程序的整个生命期中创建和删除大量请求,而是可以使用一个对象池。程序可能如下所示:
UserRequest& obtainUserRequest(ObjectPool<UserRequest>& pool)
{
// Obtain a UserRequest object from the pool
UserRequest& request = pool.acquireObject();
// populate the request with user input
// (not shown)
return (request);
}
void processUserRequest(ObjectPool<UserRequest>& pool, UserRequest& req)
{
// process the request
// (not shown)
// return the request to the pool
pool.releaseObject(req);
}
int main(int argc, char** argv)
{
ObjectPool<UserRequest> requestPool(1000);
// Set up program
// (not shown)
while (true /* program is running */) {
UserRequest& req = obtainUserRequest(requestPool);
processUserRequest(requestPool, req);
}
return (0);
}
另外,,,使用线程池也是一个提高C++程序效率的不错方式。线程池和对象池很相似,即不在程序的整个生命期中动态地创建和删除线程,而是创建一个线程池,按需使用池中的线程。如果程序要处理到来的网络请求,这种程序中常常会用到这种技术.web 服务器就可以维护一个线程池,以备查找页面,从而对到来的各个客户请求作出反应。
免责声明:本站所有文章内容,图片,视频等均是来源于用户投稿和互联网及文摘转载整编而成,不代表本站观点,不承担相关法律责任。其著作权各归其原作者或其出版社所有。如发现本站有涉嫌抄袭侵权/违法违规的内容,侵犯到您的权益,请在线联系站长,一经查实,本站将立刻删除。 本文来自网络,若有侵权,请联系删除,如若转载,请注明出处:https://yundeesoft.com/23381.html